首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P. Charton 《Journal of Non》2004,333(3):307-315
The thermodynamic properties of transparent glasses prepared in the TeO2-Ga2O3 system were investigated by differential scanning calorimetry. The change of the thermal parameters as a function of the chemical composition is discussed. Raman and both Te LIII and Ga K edge X-ray absorption spectroscopies at room temperature were used to examine the short range order. Analyses of the spectra suggest that the addition of Ga2O3 content to the TeO2 glass matrix induces the transformation of trigonal bipyramids (TeO4E, E=lone electronic pair 5s2 of Te) to trigonal pyramids (TeO3E) with formation of Te-O-Ga bridging bonds. Furthermore, Ga K edge XANES and EXAFS studies show that Ga atoms exhibit both tetrahedral (GaO4) and octahedral (GaO6) environments.  相似文献   

2.
Glasses in the ternary ZnO-P2O5-TeO2 system were prepared and studied in two compositional series (100 − x)[0.5ZnO-0.5P2O5]-xTeO2 (X-series) and 50ZnO-(50 − y)P2O5-yTeO2 (Y-series) within the concentration range of x = 0-60 and y = 0-40 mol% TeO2. Their structure was studied by Raman and 31P MAS NMR spectroscopies. The incorporation of TeOx units into the structural network is associated with the depolymerisation of phosphate chain structure as revealed by both methods. At a high TeO2 content isolated PO4 tetrahedra are formed in the structure of glass series Y, while diphosphate O3P-O-PO3 groups are present in the structure of the glass series X. In the structure of glass series Y tellurium atoms form predominantly TeO3 trigonal pyramids, whereas in the X glass series TeO4 trigonal bipyramids prevail in the glass structure. The addition of TeO2 to the parent zinc metaphosphate glass results in a decrease of glass transition temperature in both compositional series associated with the replacement of stronger P―O bonds by weaker Te―O bonds.  相似文献   

3.
J. Ozdanova  L. Tichy 《Journal of Non》2007,353(29):2799-2802
Four ZnO-Bi2O3-TeO2 glasses were prepared from high purity (4N5) oxides. From measurements of the optical transmission on very thin bulk samples the optical gap was determined at around 3.55 eV for the glasses studied. The temperature dependence of the optical gap was also determined from the room temperature close up to 500 K. Preliminary Raman scattering measurements indicate that with a decrease in TeO2 content, TeO4 trigonal bipyramid transformation proceeds into TeO3 trigonal pyramids.  相似文献   

4.
The suitability for effective thermal poling of the ternary tellurite glasses with the compositions (100 − 2x)TeO2-xBi2O3-xZnO (x = 5, 10 and 15, in molar percentage) for the second harmonic generation (SHG) was analyzed. The glass transitions and crystallization temperatures were studied via differential thermal analysis. The structural properties of the annealed glasses and furtherly heat-treated samples were probed by extended X-ray absorption fine structure (EXAFS) spectroscopy. Thermal poling of the glasses was undertaken conventionally at various temperatures close to the glass transition temperature under high vacuum and the second harmonic generated signals were compared. A new technique of two stage poling was tested for comparison. The non-linear second harmonic signal of the poled glasses was analyzed using the Maker-fringe technique and it was found that the two stage poling enhanced the non-linear efficiency when compared to the conventionally poled samples.  相似文献   

5.
《Journal of Non》2006,352(52-54):5618-5632
A continuous network model of xWO3–(1  x)TeO2 glasses is developed, based on quantum-chemical calculation and Raman spectra analysis, in order to relate the structural and vibrational properties with glass composition. The tungstate–tellurite glass network is shown to be formed mainly by structural units of three types, TeO4 trigonal bipyramids, OTeO2 trigonal pyramids, and WO6 octahedra with OW double bonds. Most of the W atoms are found to be incorporated into single OWO5 octahedra, with no more than several percents of these atoms occurring in 2[OWO5] paired tungstate centers. The structural and vibrational properties of tungstate–tellurite glasses of several compositions are analyzed by application of the model and a novel interpretation of the Raman spectra is suggested.  相似文献   

6.
TeO2 glass of purity exceeding 98.5 mol.% has been made, despite earlier suggestions that some 7.5–10 mol.% of modifier is required to form vitreous telluride networks. It is argued that in view of the high purity of the glass obtained, TeO2 may well be able to form glass by itself, given an appropriate thermal history in preparation. The hydrostatic and uniaxial pressure dependences of ultrasonic waves propagated in this glass at room temperature have been measured. The results provide the second and third order elastic constants of the glass. The bulk modulus is consistent with a ring diameter averaging about 8 atoms (Te4O4 rings) suggesting that the glass is a disordered version of paratellurite; however, if the TeO bending force constant were to be unusually strong, then a larger ring diameter (as in tellurite) would be indicated. Although the anion coordination number is only 4, the pressure derivatives of the second order elastic constants are positive and the third order elastic constants are negative, in marked contrast to the anomalous behaviour of silica-based glasses. These findings suggest that bond bending motions of bridging atoms between the trigonal bypyramidal groups (which are the structural units) do not play an important role in the elastic properties of TeO2 glass. In consequence the shear and oongitudinal acoustic mode Grüneisen parameters are both positive (γ1 = +2.14, γs = +1.11): the long wavelength acoustic modes stiffen under hydrostatic pressure.  相似文献   

7.
Local structure of the SnO-B2O3 glasses was investigated using several spectroscopic techniques. 11B MAS-NMR spectra suggested that BO4 tetrahedral units maximized at around the composition with 50 mol% SnO. The BO4 units were still present at compositions with high SnO content (67 mol% SnO), suggesting that SnO acted not only as a network modifier but also as a network former. O1s photoelectron spectra revealed that the addition of small amounts of SnO formed non-bridging oxygens (NBO) (B-O?Sn) and the amounts of NBO increased with an increase in SnO content. 119Sn Mössbauer spectra indicated that Sn was present only as Sn(II) in the glasses. The structure of the SnO-B2O3 glasses was compared with that of conventional alkali borate glasses and lead borate glasses. The thermal and viscous properties of these glasses were discussed on the basis of the glass structure revealed in the present study.  相似文献   

8.
Ternary PbCl2-Sb2O3-TeO2 system provides promising materials for photonic applications. Glasses in this system are thermally stable, their refraction index is about 2.2 and they are transparent from 400 nm up to 6 μm. The ab initio molecular dynamics (MD) simulations of xPbCl2-10SbO3/2−(90-x)TeO2 glasses (x = 10, 20, 30, 40, and 50) were carried out using density functionals, the plane-wave basis set expansion, and the projector-augment waves (PAW). The resulting glassy structures were analyzed with the help of partial radial distribution functions (RDF) and partial coordination numbers. Good agreement with the available experimental data was confirmed. The axial and equatorial oxygen atoms of TeO4 trigonal bi-pyramids were distinguished. Vibrational frequencies and their corresponding eigen-modes were found by diagonalization of the dynamical matrix. The simulated vibrational spectra were decomposed to determine the contributions from individual atomic species and some more complex structural features and compared with experimental Raman spectra. The spectral decomposition was carried out by projecting vibrational displacement vectors onto various normal modes of typical symmetric structural units. The method proved to be able to successfully interpret the experimental Raman spectra.  相似文献   

9.
The Raman spectra of the 0.1Cs2O–0.9TeO2 melt were measured and analyzed over a broad temperature range including the glassy, supercooled and molten state in an effort to follow the varying structural and dynamical aspects caused by temperature and alkali modifier. The network structure of the glass/melt is formed by mixing TeO4 trigonal bipyramid and TeO3 trigonal pyramid units. Changing alkali content and/or temperature results to conversion of the TeO4 units to TeO3 units with a varying number of non-bridging oxygen atoms. The low-frequency Raman spectra reveal a well-resolved Boson peak whose frequency also depends on temperature. The variation of the maximum of the Boson peak has been determined and discussed in the framework of current phenomenological models. The short-time dynamics of the system experiences drastic changes when approaching the glass-to-liquid transition. The temperature dependent plot of the correlation times extrapolates to a crossover value, which we assign as spectral evidence of the system's known thermodynamic glass transition temperature. Similar behavior exhibit several spectral features, such as the maximum of the Boson peak, the exponent of the susceptibility and the intensity ratio related to the structural transformation from TeO4 tbp to TeO3 tp species occurring in the medium range order structure.  相似文献   

10.
The non-linear optical performance and structure of TeO2-Nb2O5-ZnO glasses was investigated as a function of ZnO content. The third-order non-linear optical susceptibility (χ(3)) as measured by a Degenerate Four Wave Mixing (DFWM) method, initially increased with increasing ZnO content to about 8.2 × 10−13 esu for a glass containing 2.5 wt% ZnO, and then decreased to 5.9 × 10−13 esu as the ZnO content increased to 10 wt%. There was no noticeable change as the ZnO content increased from 10 to 15 wt%. The non-linear optical response time, which caused electron cloud deformation, was from 450 to 500 fs. The structure of these glasses as analyzed by Raman spectroscopy and FT-IR spectra, was affected by the addition of ZnO up to 5 wt%, when, it is believed, the Zn2+ ions occupied the interstitial positions in the glass network by replacing the Nb5+ ions. The replaced Nb5+ ions occupied the network forming positions as the Te4+ ions. Increasing ZnO > 5 wt% did not have any further effect on the glass structure.  相似文献   

11.
Anomalous physical properties (refractive index and density) of B2O3BaTiO3Na2O ternay glasses are determined and discussed on the basis of the structure present in the glasses and evidenced by vibrational Raman spectroscopy.These glasses behave in a manner analogous to the alkali B2O3X2O binary glasses for molar ratio R = basic oxide/B2O3 up to 0.3, with oxygen binding by means of bridging bonds while boron coordination changes from the trigonal to tetrahedral type. The phenomenon is indicated by a progressive weakening of the 806 cm?1 peak (attributable to a breathing vibration of the boroxol unit) and by a concomitant strengthening of the ~775 cm?1 peak (attributable to a vibrational mode of boroxol units, or derived units, containing at least one 4-coordinate boron atom). For higher R values the Raman spectra bring to light the progressive demolition of the structural units responsible for the 775 cm?1 Raman peak, which gives rise (the transformation is complete for R ~ 1) to two new main structural units, orthoborate [BTi4O10]?1 (peak at 845 cm?1) and metaborate BO2? (peak at 715 cm?1).  相似文献   

12.
In this work, new glass compositions in the TeO2-GeO2-Nb2O5-K2O system have been prepared and studied. The germanotellurite glasses were prepared by melt-quenching and their density, refractive index and characteristic temperatures have been determined. The structure of these glasses has been studied by infrared and Raman spectroscopies.The progressive replacement of TeO2 by GeO2 led to an increase of the glass transition and crystallisation temperatures of the glasses and a simultaneous decrease of their density and refractive index. Typical density and refractive index values of these glasses ranged from 4.98 to 3.85 g cm− 3 and 2.08 to 1.79, respectively, with increasing GeO2 content. The infrared spectra are dominated by a band ~ 640 cm− 1 in the tellurite glass and ~ 800 cm− 1 in the germanate glass. The Raman spectra of the germanotellurite glasses present an intense boson peak between ~ 34 and 47 cm− 1, together with high frequency peaks at ~ 670 cm− 1 and ~ 470 cm− 1 for high tellurite and high germanate glass compositions, respectively. The vibrational spectra of these germanotellurite glasses indicate that the glass network consists basically of TeO4 and [TeO3]/[TeO3 + 1] units, mixed with GeO4 and NbO6 polyhedra.  相似文献   

13.
H. Doweidar 《Journal of Non》2011,357(7):1665-1670
Data of density, refractive index and thermal expansion coefficient for B2O3-SiO2 and GeO2-SiO2 glasses have been analyzed. The volumes of the structural units are the same found for the vitreous B2O3, GeO2 and SiO2. The volume of any structural unit is constant over the entire composition region of the glass system. The same has been found for the differential refraction and unit refraction of the structural units in these glasses. Different features are observed for the differential expansion of the structural units. There is a considerable change with composition in the differential expansion of BO3, GeO4 and SiO4 units. The effect is attributed to a change in the asymmetry of vibrations with the number of Si-O-B or Si-O-Ge linkages in the matrix. The thermal expansion coefficient is mainly determined by the contribution of B2O3 or GeO2 in the concerned glasses.  相似文献   

14.
Glasses of the xNd2O3(1−x)(3Bi2O3 · PbO) system with 0?x?0.30 were obtained and studied by IR spectroscopy, X-ray photoelectron spectroscopy (XPS), density and magnetic susceptibility measurements. IR and density measurements show that the addition of neodymium ions produces structural changes and the neodymium ions play a network modifier role in the host glass matrix. XPS investigation permitted following the evolution of the structural disorder, of the degree of polymerization of bismuthate chains and of the fraction of bridging oxygens with respect to the neodymium ion concentration of the studied glasses. Magnetic susceptibility data show that the Nd3+ ions are present as isolated species for x?0.05 and as both isolated and exchange coupled species for higher x values.  相似文献   

15.
Pb(PO3)2-TeO2 glasses in the whole range of glass composition were first obtained and their properties (refractive index, density, Tg and light scattering losses) were determined. Based on the vibrational spectroscopy data a new approach was applied to investigate the interactions of initial oxides in melts resulted in so-called constant stoichiometry groupings (CSGs) formation symbolizing intermediate range order in glasses. Vibrational spectra of glasses are interpreted as a superposition of unchangeable spectral forms (principal spectral components (PSCs)) belonging to CSGs: PbO · P2O5, TeO2 · 2PbO · 2P2O5, TeO2 · PbO · P2O5, TeO2, and possibly 2TeO2 · PbO · P2O5 and 6TeO2 · PbO · P2O5. In this work Multivariate Data Analysis has been applied as the independent mathematical tool to decompose Raman spectra of glasses and reveal the number of PSCs. It is shown that application of factor analysis results in the same five PSCs that confirms our data obtained from the CSG concept. This concept allows also the prediction of the existence of unknown compounds, and correspondingly some crystals (TeO2⋅ 2PbO⋅2P2O5 and others) were revealed by XRPD of the crystallized glasses. The CSG concept opens the way for elaboration of low scattering glasses as candidates for Raman amplifiers. It is shown that Pb(PO3)2-TeO2 glasses with small content of TeO2 are of interest to photonic technology.  相似文献   

16.
Raman and infrared spectroscopy have been employed to investigate the 99.5%[xB2O3(1−x)Bi2O3]0.5%CuO glasses with different Bi/B nominal ratios (0.07?x?0.625) in order to obtain information about the competitive role of B2O3 and Bi2O3 in the formation of the glass network. The glass samples have been prepared by melting at 1100 °C and rapidly cooling at room temperature. In order to relax the structure, to improve the local order and to develop crystalline phases the glass samples were kept at 575 °C for 10 h. The influence of both Bi2O3 and CuO on the vitreous B2O3 network as well as the local order changes around bismuth and boron atoms in as prepared and heat treated samples was studied. Structural modifications occurring in heat treated samples compared to the untreated glasses have been observed.  相似文献   

17.
Glasses, whose basic composition was based on the CaO-MgO-SiO2 system and doped with B2O3, P2O5, Na2O, and CaF2, were prepared by melting at 1400 °C for 1 h. Raman and infrared (IR) spectroscopy revealed that the main structural units in the glass network were predominantly Q1 and Q2 silicate species. The presence of phosphate and borate units in the structure of the glasses was also evident in these spectra. X-ray analysis showed that the investigated glasses devitrified at 750 °C and higher temperatures. The crystalline phases of diopside and wollastonite dominated, but weak peaks, assigned to akermanite and fluorapatite, were also registered in the diffractograms. The presence of B2O3, Na2O, and CaF2 had a negligible influence on the assemblage of the crystallized phases, but it caused a reduction of crystallization temperature, comparing to similar glasses of the CaO-MgO-SiO2 system.  相似文献   

18.
《Journal of Non》2007,353(13-15):1372-1376
The properties of novel ternary tellurite glasses, based on the TeO2–BaO–Bi2O3 system, are reported for their applications in on-line chemical sensing and process control by characterizing the fundamental frequencies of molecular vibrations in the 2–5 μm spectral region of mid-IR. The chemical sensing for process control also requires above room temperature operation (>100 °C) for prolonged periods of time. Bulk samples of ternary tellurite glasses with a number of different compositions were prepared using heavy molecular weight oxides of TeO2, BaO, and Bi2O3. Infrared and Raman spectroscopic analysis was carried out together with differential thermal analysis to study the relationship between glass structure and thermal and viscosity properties. The temperature dependence of the viscosities of the glasses is also reported. The compositional dependence of Raman frequency shifts and the corresponding change in the coordination of Te–O structure is discussed. The results from the IR edge, reflection spectroscopic, and wavelength dependence of refractive index are also reported.  相似文献   

19.
Glasses in the ternary system PbO-MoO3-P2O5 were prepared in three compositional series (100 − x)[0.5PbO-0.5P2O5]-xMoO3 (A), 50PbO-yMoO3-(50 − y)P2O5 (B) and (50 − z)PbO-xMoO3-50P2O5 (C) and their structure was studied by Raman and 31P NMR spectroscopies. In the compositional series (100 − x)[0.5PbO-0.5P2O5]-xMoO3 homogeneous glasses were prepared in the concentration region of 0-70 mol% MoO3. Their glass transition temperature increases with increasing MoO3 content having a maximum at x = 50 mol% MoO3. 31P MAS NMR spectra reveal that in the glass series (A) the incorporation of MoO3 results in the shortening of phosphate chains and gradual transformation Q2 units into Q2 and Q0 units, prevailing in glasses with a high MoO3 content. Octahedral structural units MoO6 dominate in most glass compositions and they are present also in the structure of Pb(MoO2)2(PO4)2 compound corresponding to the glass composition 50Pb(PO3)2-50MoO3. The analysis of Raman spectra of glasses of the (B) series with a high MoO3 content showed the transformation of octahedral MoO6 units into tetrahedral MoO4 units.  相似文献   

20.
In this paper we describe fabrication and characterization of rare-earth-doped active tellurite glasses to be used as active laser media for fiber lasers emitting in the 2 μm region. The base composition is (mol%): 75TeO2-20ZnO-5Na2O with different concentrations of Tm3+, Yb3+ and Ho3+ as dopants or co-dopants. Optical properties of doped glasses were studied and pumping at 800 nm and at 980 nm were tested in order to compare the efficiency of two pumping mechanisms. Optical characterization carried out on glasses containing only Tm3+ ions indicated the optimum concentration of Tm2O3 in terms of emission efficiency as 1 wt%. The addition of 5 wt% of Yb2O3 to Tm3+-doped glasses led to the best results in terms of intensity of fluorescence emission and of lifetime values. Yb and Ho co-doped Tm-tellurite glass was measured in emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号