首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthetic investigation of the CuII/maleamate(−1) ion (HL)/N,N′,N′′-chelate general reaction system has allowed access to compounds [Cu2(HL)2(bppy)2](ClO4)2·H2O (1·H2O), [Cu(HL)(bppy)(ClO4)] (2) and [Cu(HL)(terpy)(H2O)](ClO4) (4) (bppy = 2,6-bis(pyrazol-1-yl)pyridine, terpy = 2,2′;6′,2′′-terpyridine). In the absence of externally added hydroxides, compound [Cu2(L′)2(bppy)2](ClO4)2 (3) was obtained from MeOH solutions; L′ is the monomethyl maleate(−1) ligand which is formed in situ via the CuII-assisted HL → L′ transformation. In the case of tptz-containing (tptz = 2,4,6-tris(2-pyridyl)-1,3,5-triazine) reaction systems, the CuII-assisted hydrolysis of tptz to pyridine-2-carboxamide (L1) afforded complex [Cu(L1)2(NO3)2] (5). The crystal structures of 15 are stabilized by intermolecular hydrogen bonding and π–π stacking interactions. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the ligands.  相似文献   

2.
Five new compounds formulated as [NiII(dca)2(para-ABN)2(H2O)2] (1), [CuII(dca)2(para-ABN)2(H2O)2] (2), [CuII(dca)2(para-ABN)2]n, (3), [CuII(dca)2(ortho-ABN)2]n, (4) and [CdII(dca)2(meta-ABN)2]n (5), where dca = dicyanamide and ABN = aminobenzonitrile, have been synthesized and characterized by single crystal X-ray diffraction studies and low temperature (300–2 K) magnetic measurements. The structural analyses revealed that 1 and 2 are isomorphous where dca and para-ABN both act as monodentate ligands. 3 consists of infinite double stranded chains of Cu(II) ions connected through the para-ABN bridges whereas 4 and 5 consist of infinite double stranded chains of Cu(II) and Cd(II) respectively, connected through μ1,5-dca bridges. The compounds extend their geometries to three-dimensional for 13 and 5 and two-dimensional for 4 through hydrogen bonding interactions. All the metal ions Ni2+, Cu2+ and Cd2+ are located on inversion centres and have distorted octahedral coordination geometries. The variable temperature magnetic susceptibility measurements show that the global feature of the χMT versus T curves for 3 and 4 is characteristic of very weak antiferromagnetic interactions and between 300 and 2 K the best fit parameters were determined as J = −2.35 and −5.1 cm−1, respectively.  相似文献   

3.
The reactions of 2-(hydromethyl)pyridine, hmpH, with Ni(O2CMe)2·4H2O in H2O, in the absence of counterions, have been investigated. The synthetic study has led to the two new complexes [Ni(O2CMe)2(hmpH)2] (1) and [Ni4(O2CMe)4(hmp)4(H2O)2] (2). Complex 1 can also be transformed into 2 by reacting with an excess of NaOH in H2O. The structures of 1 and 2·2.25H2O·0.5(1,4-dioxane) have been solved by single-crystal, X-ray crystallography. The octahedral NiII center in centrosymmetric 1 is coordinated by two 1.10 (Harris notation) MeCO2 groups and two N,O-chelating (1.11) hpmH ligands. The tetranuclear cluster molecule of 2·2.25H2O·0.5(1,4-dioxane) possesses a distorted cubane {Ni43-OR′)4}4+ core [R′ = (2-pyridyl)CH2–] with the NiII ions and the oxygen atoms from the 3.31 hmp ligands occupying alternate vertices of the cube. Two 2.11 MeCO2 groups cap two opposite faces of the cube, while two 1.10 MeCO2 ions and two aqua ligands complete the octahedral coordination sphere of the metal centers. Characteristic IR bands for the two complexes are discussed in terms of the nature of bonding and the structures of the two complexes. The variable-temperature magnetic properties of 2 have been modeled with two J values, and reveal antiferromagnetic exchange interactions between the four NiII ions to give a diamagnetic ground state.  相似文献   

4.
The use of di-2-pyridyl ketone oxime, (py)pkoH, and phenyl 2-pyridyl ketone oxime, ppkoH, in copper(II) hexafluoroacetylacetonate chemistry is reported. The reaction of CuCl2·2H2O with one and two equivalents of ppkoH and Na(hfac), respectively, in CH2Cl2 affords the dinuclear complex [Cu2(hfac)2(ppko)2] (1) in excellent yield. The replacement of ppkoH by (py)pkoH gives the isostructural compound [Cu2(hfac)2{(py)pko}2] (2) in good yield. The CuII atoms in both 1 and 2 are doubly bridged by the oximate groups of two η1112 ppko and (py)pko ligands, respectively. The bridging Cu–(R–NO)–Cu′ units are not planar, with the torsion angles being 23.2° (1) and 20.3° (2). A bidentate chelating hfac ligand completes five-coordination at each square pyramidal metal ion. The hfac-free reaction system CuCl2·2H2O/(py)pkoH/NEt3 (1:2:1) gives instead the mononuclear complex [CuCl{(py)pko}{(py)pkoH}] (3) in very good yield. The CuII atom is coordinated by two N,N′-bidentate (py)pko/(py)pkoH chelates and a monodentate chloride anion resulting in a distorted square pyramidal geometry around the metal center. Variable-temperature, solid-state dc magnetic studies were carried out on the representative dinuclear complex 1 in the 2.0–300 K range. The data indicate a very strong antiferromagnetic exchange interaction and a resulting S = 0 ground state, which is well isolated from the S = 1 excited state. The J value of −720 cm−1 was derived from the fitting of the experimental data using the Hamiltonian H = −J(S1 · S2).  相似文献   

5.
Three mixed-ligand CuII complexes bearing iminodiacetato (ida) and N-heterocyclic ligands, namely, [Cu2(ida)2(bbbm)(H2O)2] · H2O (1), [Cu2(ida)2(btx)(H2O)2] · 2H2O (2) and [Cu2(ida)2(pbbm)(H2O)2] · H2O · 3CH3OH (3) (bbbm = 1,1-(1,4-butanediyl)bis-1H-benzimidazole, btx = 1,4-bis(1,2,4-triazol-1-ylmethyl)benzene, pbbm = 1,1-(1,3-propanediyl)bis-1H-benzimidazole), in addition to three fcz-based CuII complexes, namely, {[Cu(fcz)2(H2O)2] · 2NO3}n (4), {[Cu(fcz)2(H2O)] · SO4 · DMF · 2CH3OH · 2H2O}n (5) and {[Cu(fcz)2Cl2] · 2CH3OH}n (6) (fcz = 1-(2,4-difluorophenyl)-1,1-bis[(1H-1,2,4-triazol-l-yl) methyl]ethanol) have been prepared according to appropriate synthetic strategies with the aim of exploiting new and potent catalysts. Single crystal X-ray diffraction shows that 1 and 2 possess similar binuclear structures, 3 features a 2D pleated network, and 4 exhibits a 1D polymeric double-chain structure. Complexes 1-6 are tested as catalysts in the green catalysis process of the oxidative coupling of 2,6-dimethylphenol (DMP). Under the optimized reaction conditions, these complexes are catalytically active by showing high conversion of DMP and high selectivity of PPE. The preliminary study of the catalytic-structural correlations suggests that the coordination environment of the copper center have important influences on their catalytic activities.  相似文献   

6.
The synthesis and characterization of new dinuclear MnIII and tetranuclear CuII complexes, [HL1Mn(DMSO)]2 (1) and [H2L2Cu2(MeO)2]2 (2), are reported (H4L1 = 2-hydroxy-N-[2-({2-[(2-hydroxybenzoyl)amino]ethyl}amino)ethyl]benzamide and H4L2 = 2-hydroxy-N-[3-({3-[(2-hydroxybenzoyl)amino]propyl}(methyl)amino)propyl]benzamide). Single crystal X-ray structures have been determined for 1 and 2. In 1 only one of the two amide functions of H4L1 is deprotonated in addition to the phenol ones, while in 2 all the amide functions of H4L2 are protonated and none of the potential nitrogen donors (amide and amine) is involved in the coordination to copper. HL1 and H2L2 do not play the role of compartmental ligands and do not wrap around one Mn and one Cu ion, respectively, but embrace two metal centers yielding, with the respective assistance of auxiliary DMSO and methoxo ligands, dinuclear manganese and tetranuclear copper complexes, respectively. 1 includes two well isolated MnIII ions (Mn?Mn′ = 7.33 Å) that do not interact magnetically. The intermolecular Mn?Mn″ distance along the 1D chains (10.17 Å) is also too large to allow extended magnetic interactions. The pairwise magnetic interactions between the copper(II) ions in the tetranuclear complex 2 are so large that the χMT product is already equal to zero at room temperature, implying that the antiferromagnetic interaction is around −1000 cm−1, as observed previously for di-μ-hydroxo–dicopper complexes.  相似文献   

7.
Four copper(II) complexes were synthesized by reactions of new imidazole-containing polyamine ligand N1-(2-aminoethyl)-N1-(1H-imidazol-4-ylmethyl)-ethane-1,2-diamine (HL) with Cu(ClO4)2 · 6H2O under different pH and their structures were characterized by X-ray crystallography. Interestingly, the complexes have diverse structures from protonated ligand [H3(HL)][CuCl4] · Cl (1), dinuclear [Cu2(HL)2Cl](ClO4)3 · H2O (2), one-dimensional chain polynuclear {[Cu(L)](ClO4)}n (3) to cyclic-tetranuclear [Cu4(L)4](ClO4)4 · 3CH3CN (4) coordination compounds by varying reaction pH from acidic to basic. The results indicate that the reaction pH has great impact on the formation and structure of the complexes. The magnetic measurements show that there are antiferromagnetic interactions between the Cu(II) centers with g = 2.09, J = −39.0 cm−1 and g = 2.17, J = −36.8 cm−1 for 3 and 4, respectively.  相似文献   

8.
The reaction between 1,2,4,5-benzenetetracarboxylic acid (H4BT) and transition metal ions Mn+2, Co+2 and Cu+2 in the presence of the N-donor co-ligand 1,3-bis(4-pyridyl) propane (BPP) has afforded three new coordination polymers named, {[Mn4(BT)2(BPP)6(H2O)6]·4H2O}nMnBTBPP, {[Co2(BT)(BPP)2(H2O)6]·2H2O}nCoBTBPP and {[Cu2(BT)(BPP)2(H2O)]·6H2O}nCuBTBPP. They were characterized by a combination of analytical, spectroscopic and crystallographic methods. According to the thermal analysis results all the compounds present coordinated and lattice water molecules in the structures. In compounds MnBTBPP and CoBTBPP, the metal centers exhibit octahedral geometry while in compound CuBTBPP, the Cu+2 ions adopt square-planar and square-pyramidal geometries. In all cases, both BPP and BT ligands are coordinated to the metal sites in the bridging mode extending the polymeric networks. The BT ligand carboxylate groups act in a monodentate coordination mode as indicated by the Raman spectra data through the Δν [νasym(COO) − νsym(COO)] value.  相似文献   

9.
Four azide bridged dinuclear copper(II) complexes, [Cu2(LX)2(N3)2](ClO4)2, with LX = substituted N,N-bis[(3,5-dimethylpyrazole-1-yl)-methyl]benzylamine, [X = H (1), OMe (2), Me (3) and Cl (4)] have been synthesized, out of which complexes 1 and 2 have been characterized structurally. In Complex 1 the two bridging azide ligands have connected the two metal centers in an end-on (EO) fashion with aSP (asymmetric Square Pyramidal) geometry and showed an weak antiferromagnetic interaction (J = −3.34 cm−1). On the contrary, in complex 2, the two metal centers have been connected in end-to-end (EE) fashion exhibiting moderately strong ferromagnetic interaction (J = +19.7 cm−1). Cyclic voltammetric studies performed on all the four complexes show a reasonably good correlations when E1/2 for CuIICuII → CuIICuIII and CuIICuIII → CuIIICuIII oxidations are plotted against σ (substituent constants) with ρ = −0.182 (R= 0.92) and −0.684 (R= 0.99) respectively.  相似文献   

10.
Two mixed-valence CuICuII coordination polymers [CuICuII(qdiol)ClL]n (qdiol2−=2,3-dioxyquinoxalinate, L=2,2′-bipyridine, 1; L=1,10-phenanthroline, 2) were obtained in basic ethanolic solution of CuCl2, 1,4-dihydro-2,3-quinoxalinedione and L under the solvothermal condition. 1 and 2 are similar in composition, but differ remarkably in structure. The coordination modes of CuII, qdiol2− and L are identical in both complexes. But the CuI ions are two- and three-coordinated, and the Cl ions are terminal and bridging, in 1 and 2, respectively, which are relevant to the significantly different C-H?Cl hydrogen bonding pattern of bpy and phen. The temperature variable magnetic susceptibilities show that 1 is paramagnetic and 2 is weakly antiferromagnetic. The complex impedance spectroscopic studies indicate that both 1 and 2 are semiconductors and 2 is more conducting.  相似文献   

11.
Three new fluorous coordination polymers with a fluorinated carboxylate tecton and N-donor co-ligands, {[Zn2(hfipbb)2(phen)2]·2H2O}n (1), [Zn2(hfipbb)2(bipy)(H2O)]n (2), and [Zn5(hfipbb)4 (Hhfipbb)2 (bpp)]n (3), [H2hfipbb = 4,4′-(hexafluoroisopropylidene)bis(benzoic acid), phen = 1,10-phenthroline, bipy = 4,4′-bipyridine, and bpp = 1,3-bi(4-pyridyl)propane], have been prepared and characterized by elemental analysis, IR spectra, and X-ray diffraction. Compound 1 exhibits a 3D supramolecular network assembled from two independent 1D chain motifs [Zn(hfipbb)(phen)] through π?π stacking, and C-H?F and O-H?O interactions. Compound 2 features 2D undulating layer structure with 44-sql network. Whereas, in compound 3, pentanuclear [Zn5(η2-O)2(μ2-η1:η1-CO2)]2− cores are bridged by hfipbb2− and bpp ligands into a 3D 6-connected sxd framework with a point symbol of (33·46·55·6). The diverse arrangements of the compounds show the modulation of the heterocyclic N-donor co-ligands can suitably mediate the coordination requirement of metal centers as well as the binding modes of fluorinated carboxylate tecton, which consequently generate diverse crystalline architectures. In addition, the properties of thermogravimetric analysis, X-ray powder diffraction, and photoluminescent behaviors of the compounds have also been discussed.  相似文献   

12.
The copper(II) complexes [Cu2(phen)2(HL1)2] (ClO4)2 (1) and [Cu2(phen)2(HL2)2] (ClO4)2 (2) synthesized from two potentially tridentate ligands N-(2-hydroxybenzyl) propanolamine (H2L1) and N-(5-methyl-2-hydroxybenzyl) propanolamine (H2L2) have centrosymmetric bis(μ2-phenoxo)-bridged dicopper(II) structures. Variable temperature magnetic measurements have revealed the existence of relatively weak antiferromagnetic interactions (1: 2J=−212.5, 2: 2J=−337.0 cm−1) with respect to the bridging angles (1: θ=101.47(18)°, 2: θ=102.79(12)°). The results suggest that the distortion index of the Cu(II) atoms (1: τ=0.73, 2: τ=0.53) may be the major factor governing the spin coupling between the copper(II) centers of these diphenoxo-bridged binuclear complexes. The coordination moieties of complex 1 are connected into a 1D linear structure via intermolecular hydrogen bonds between alkoxyl, amine, and perchlorate groups.  相似文献   

13.
By introducing different quinolone antibacterial drugs into the octamolybdates POMs, four new compounds, [CuII(L1)2(H2O)2]H2[β-Mo8O26]·4H2O (1), [CuII2(L2)4][δ-Mo8O26]·4H2O (2), [CuII2(L3)2(H2O)2][β-Mo8O26] (3), [CuII2(L4)2(H2O)4][β-Mo8O26]·2H2O (4) (where L1 = Enrofloxacin; L2 = Pipemidic Acid; L3 = Norfloxacin; L4 = Enoxacin), have been synthesized and characterized by routine physical methods and single crystal X-ray diffraction. In compound 1, isolated Cu-Enrofloxacin coordination subunits array the both sides of β-Mo8O26, forming 3D supramolecular structure via noncovalent interactions. And the Cu-Pipemidic Acid subunits covalently link δ-Mo8O26 to form 3D supramolecular structures via short interactions in 2. In 3, the Cu-Norfloxacin motif exhibits 1D chain structure, and the tetra-dentate β-[Mo8O26]4− clusters interact with neighboring chains to construct a 2D sheet. Similar to that of 3, the Cu-Enoxacin subunit in 4 exhibits 1D chain structure, and the bi-dentate β-[Mo8O26]4− clusters interact with neighboring chains to construct a 2D sheet. Due to the introduction of different drug molecules, the octamolybdates POMs exhibit different isomers and structures, which bring different properties. The antitumor activities of compounds 1-4 in vitro were studied by MTT experiments, and the results show that introduction of different drug molecules onto the polyoxoanion surface can affect their antitumor activities.  相似文献   

14.
Two mononuclear and one dinuclear copper(II) complexes, containing neutral tetradentate NSSN type ligands, of formulation [CuII(L1)Cl]ClO4 (1), [CuII(L2)Cl]ClO4 (2) and [CuII2(L3)2Cl2](ClO4)2 (3) were synthesized and isolated in pure form [where L1 = 1,2-bis(2-pyridylmethylthio)ethane, L2 = 1,3-bis(2-pyridylmethylthio)propane and L3 = 1,4-bis(2-pyridylmethylthio)butane]. All these green colored copper(II) complexes were characterized by physicochemical and spectroscopic methods. The dinuclear copper(II) complex 3 changed to a colorless dinuclear copper(I) species of formula [CuI2(L3)2](ClO4)2,0.5H2O (4) in dimethylformamide even in the presence of air at ambient temperature, while complexes 1 and 2 showed no change under similar conditions. The solid-state structures of complexes 1, 2 and 4 were established by X-ray crystallography. The geometry about the copper in complexes 1 and 2 is trigonal bipyramidal whereas the coordination environment about the copper(I) in dinuclear complex 4 is distorted tetrahedral.  相似文献   

15.
The use of succinamic acid (H2sucm)/N,N′-chelate (2,2′-bipyridine, bpy; 4,4′-dimethyl-2,2′-bipyridine, dmbpy; 1,10-phenanthroline, phen) ‘ligand blends’ in CuX2·yH2O (X = NO3, y = 3; X = Cl, y = 0) chemistry has yielded the new complexes [Cu2(Hsucm)3(bpy)2](NO3)·0.5MeOH (1·0.5MeOH), [Cu2(Hsucm)(OH)Cl(bpy)2](OH)·3.6H2O (5·3.6H2O) and [Cu2(Hsucm)2Cl2(phen)2] (6). The succinamate(−1) ion behaves as a carboxylate ligand and exists in two different coordination modes in the structures of the above complexes, i.e., the common syn, syn μ2OO′ in 1, 5 and 6, and the μ22OO′ in 1. The primary amide group of Hsucm remains uncoordinated and participates in intermolecular hydrogen bonding interactions leading to 1D, 2D and 3D networks. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the Hsucm ligands.  相似文献   

16.
Two tridentate N,N,O donor Schiff bases, HL1 (4-(2-ethylamino-ethylimino)-pentan-2-one) and HL2 (3-(2-amino-propylimino)-1-phenyl-butan-1-one) on reaction with CuII acetate in presence of triethyl amine yielded two basal-apical, mono-atomic acetate oxygen-bridging dimeric copper(II) complexes, [Cu2L12(OAc)2] (1), [Cu2L22(OAc)2] (2). Whereas two other similar tridentate ligands HL3 (4-(2-amino-propylimino)-pentane-2-one) and HL4 (3-(2-amino-ethylimino)-1-phenyl-butan-1-one) under the same conditions produced a mixture of the corresponding dimers and a one-dimensional alternating chain of the dimer and copper acetate moiety, [Cu4L32(OAc)6]n (3) and [Cu4L42(OAc)6]n (4), formed by a very rare μ3 bridging mode of the acetate ion. All four complexes (14) have been characterized by X-ray crystallography. The isotropic Hamiltonian, H = −JS1S2 has been used to interpret the magnetic data. Magnetic measurements of 1 and 2 in the temperature range 2–300 K reveal a very weak antiferromagnetic coupling for both complexes (J = −0.56 and −1.19 cm−1 for 1 and 2, respectively).  相似文献   

17.
{[Pb3(CPIDA)2(H2O)3]·H2O}n1, {[Cd3(CPIDA)2(H2O)4]·5H2O}n2, [Cd(HCPIDA)(bpy)(H2O)]n3 (bpy=4,4′-bipyridine) and {[Co3(CPIDA)2(bpy)3(H2O)4]·2H2O}n4 were synthesized with N-(4-carboxyphenyl) iminodiacetic acid (H3CPIDA). In 1, the CPIDA3− ligands adopt chelating and bridging modes with Pb(II) to possess a 3D porous framework. In 2D-layer 2, the CPIDA3− ligands display a simple bridging mode with Cd(II). The 2D layers have parallelogram-shaped channels along a axis. With bpy ligands, the HCPIDA2− ligands in 3 show more abundant modes, but 3 still displays a 2D sheet on bc plane for the unidentate bpy molecules. However, in 3D-framework 4, the bpy ligands adopt bridging bidentate at a higher pH value and the CPIDA3− ligands show bis-bidentate modes with Co(II). Additionally, 2D correlation analysis of FTIR was introduced to ascertain the characteristic adsorptions location of the carboxylate groups with different coordination modes in 4 with thermal and magnetic perturbation. Compounds 1, 2 and 4 exhibit the fluorescent emissions at room temperature.  相似文献   

18.
Complexes of ZnII salts with 4,4′-bipyridine-N,N′-dioxide (bpdo) have been prepared by solvathermal and solvent layering methods. Three complexes were obtained from ZnBr2: 1 is a 2D coordination polymer [Zn2Br4(bpdo)2]n, (2) a discrete trimetallic molecule [Zn3Br6(H2O)2(bpdo)4] and 3 a salt [ZnBr4][Zn(H2O)5(bpdo)]. Complexes 2 and 3 contain ZnII ions in both octahedral and tetrahedral coordination geometry. While in 2, these are covalently linked by bridging bpdo ligands forming zwitterionic trimetallic molecules, in 3 there is complete charge separation into [ZnBr4]2− anions and [Zn(H2O)5(bpdo)]2+ cations. When Zn(NCS)2 is used as starting material, a 1D coordination polymer [Zn(H2O)2 (bpdo)(NCS)2]n is obtained.  相似文献   

19.
The work in this paper reports syntheses, molecular and supramolecular structures, electrochemistry and magnetic properties of two diphenoxo-bridged dinickel(II) compounds [NiII2L(N3)2(H2O)2]·CH3CN (1) and [NiII2L(N3)2(H2O)] (2), where H2L is the tetraimino diphenolate macrocyclic ligand, obtained on [2 + 2] condensation of 4-methyl-2,6-diformylphenol and 2,2′-dimethyl-1,3-diaminopropane. Brown colored compound 1 and green colored compound 2 are produced from the same reaction mixture as a function of temperature; 1 is formed from the reaction mixture in acetonitrile at low temperature (ca. 5 °C), while 2 is formed on heating the reaction mixture in acetonitrile. Crystals of compounds 1 and 2 are monoclinic (space group P21/c) and orthorhombic (space group P212121), respectively. Analyses of the crystal packing of the crystalline phases reveal that two-dimensional topologies are resulted in both 1 and 2 due to hydrogen bonding interactions. Variable-temperature (2-300 K) magnetic susceptibility measurements of the two compounds reveal that the metal centers in both the complexes are coupled by moderate antiferromagnetic interactions with J values (= -2JS1·S2) −18.8 and −34.2 cm−1 for 1 and 2, respectively. Electrochemical analyses of 2 reveal that this compound exhibits two-step reduction couples at E½ = −977 and −1155 mV.  相似文献   

20.
μ-1,3-Acetamide or acetate bridged, symmetric and asymmetric dicopper(II) complexes viz [Cu2(P1-O)(NHAc)](ClO4)2 (1), [Cu2(P2-O)(OAc)](ClO4)2 (2) and [Cu2(P2′-O)(OAc)(H2O)](ClO4)2 (3) were synthesized by employing classic dinucleating ligands; P1-OH, P2-OH (symmetric), and P2′-OH (asymmetric) having trivial differences in their ligand frame work. Solid state structures of these complexes were determined by X-ray crystallography. In solution, they were also characterized by various spectroscopic techniques, which includes ESI-MS, FT-IR, optical, solution magnetic moment, paramagnetic 1H NMR and EPR. The solution magnetic moment of these complexes at room temperature suggests a weak magnetic interaction between the two Cu(II) centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号