首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Although reaction of guaiazulene (1a) with 1,2-diphenyl-1,2-ethanediol (2a) in methanol in the presence of hydrochloric acid at 60 °C for 3 h under aerobic conditions gives no product, reaction of 1a with 1,2-bis(4-methoxyphenyl)-1,2-ethanediol (2b) under the same reaction conditions as 2a gives a new ethylene derivative, 2-(3-guaiazulenyl)-1,1-bis(4-methoxyphenyl)ethylene (3), in 97% yield. Similarly, reaction of methyl azulene-1-carboxylate (1b) with 2b under the same reaction conditions as 1a gives no product; however, reactions of 1-chloroazulene (1c) and the parent azulene (1d) with 2b under the same reaction conditions as 1a give 2-[3-(1-chloroazulenyl)]-1,1-bis(4-methoxyphenyl)ethylene (4) (81% yield) and 2-azulenyl-1,1-bis(4-methoxyphenyl)ethylene (5) (15% yield), respectively. Along with the above reactions, reactions of 1a with 1,2-bis(4-hydroxyphenyl)-1,2-ethanediol (2c) and 1-[4-(dimethylamino)phenyl]-2-phenyl-1,2-ethanediol (2d) under the same reaction conditions as 2b give 2-(3-guaiazulenyl)-1,1-bis(4-hydroxyphenyl)ethylene (6) (73% yield) and (Z)-2-[4-(dimethylamino)phenyl]-1-(3-guaiazulenyl)-1-phenylethylene (7) (17% yield), respectively. Comparative studies of the above reaction products and their yields, crystal structures, spectroscopic and electrochemical properties are reported and, further, a plausible reaction pathway for the formation of the products 3-7 is described.  相似文献   

2.
Reaction of azulene (1) with 1,2-bis[4-(dimethylamino)phenyl]-1,2-ethanediol (2) in a mixed solvent of methanol and acetonitrile in the presence of 36% hydrochloric acid at 60 °C for 3 h gives 2-(azulen-1-yl)-1,1-bis[4-(dimethylamino)phenyl]ethylene (3) (8% yield), 1-(azulen-1-yl)-(E)-1,2-bis[4-(dimethylamino)phenyl]ethylene (4) (28% yield), and 1,3-bis{2,2-bis[4-(dimethylamino)phenyl]ethenyl}azulene (5) (9% yield). Besides the above products, this reaction affords 1,1-di(azulen-1-yl)-2,2-bis[4-(dimethylamino)phenyl]ethane (6) (15% yield), a meso form (1R,2S)-1,2-di(azulen-1-yl)-1,2-bis[4-(dimethylamino)phenyl]ethane (7) (6% yield), and the two enantiomeric forms (1R,2R)- and (1S,2S)-1,2-di(azulen-1-yl)-1,2-bis[4-(dimethylamino)phenyl]ethanes (8) (6% yield). Furthermore, addition reaction of 3 with 1 under the same reaction conditions as the above provides 6, in 46% yield, which upon oxidation with DDQ (=2,3-dichloro-5,6-dicyano-1,4-benzoquinone) in dichloromethane at 25 °C for 24 h yields 1,1-di(azulen-1-yl)-2,2-bis[4-(dimethylamino)phenyl]ethylene (9) in 48% yield. Interestingly, reaction of 1,1-bis[4-(dimethylamino)phenyl]-2-(3-guaiazulenyl)ethylene (11) with 1 in a mixed solvent of methanol and acetonitrile in the presence of 36% hydrochloric acid at 60 °C for 3 h gives guaiazulene (10) and 3, owing to the replacement of a guaiazulen-3-yl group by an azulen-1-yl group, in 91 and 46% yields together with 5 (19% yield) and 6 (13% yield). Similarly, reactions of 2-(3-guaiazulenyl)-1,1-bis(4-methoxyphenyl)ethylene (12) and 1,1-bis{4-[2-(dimethylamino)ethoxy]phenyl}-2-(3-guaiazulenyl)ethylene (13) with 1 under the same reaction conditions as the above provide 10, 2-(azulen-1-yl)-1,1-bis(4-methoxyphenyl)ethylene (16), and 1,3-bis[2,2-bis(4-methoxyphenyl)ethenyl]azulene (17) (93, 34, and 19% yields) from 12 and 10 and 2-(azulen-1-yl)-1,1-bis{4-[2-(dimethylamino)ethoxy]phenyl}ethylene (18) (97 and 58% yields) from 13.  相似文献   

3.
(R)-4-Ethyl-2-(1,1-dimethylpropyl)-2-oxazoline (1) and (S)-4-tert-butyl-2-(1,1-dimethylbutyl)-2-oxazoline (2) were synthesized in two steps from the corresponding enantiopure amino alcohols and acid chlorides in a total yield of 95% and 72%, respectively. (S)-2-(1-Adamantyl-1-methylethyl)-4-isobutyl-2-oxazoline (3) was obtained from adamantyl bromide and l-leucinol in five steps in a total yield of 82%. Reactions of oxazolines 13 with Pd(OAc)2 in AcOH or CH2Cl2 followed by treatment with LiCl afforded the corresponding μ-Cl dimeric cyclopalladated complexes 15, 17, and 20 in good yield. Compounds 15, 17, and 20 reacted with PPh3 to furnish the corresponding mononuclear complexes 16, 19, and 21. The 31P NMR spectra of trans(N,P) adducts 16, 19, and 21 contained signals of two diastereomers in a ratio of ca. 1.3:1.  相似文献   

4.
Reaction of 1-azulenyl methyl sulfoxide (1) under acidic conditions gave the 1,1′-biazulene derivative 3. Methylmercapt groups of 3 were readily converted to formyl groups by Vilsmeier reaction to afford 3,3′-diformyl-1,1′-biazulene (4), which reacted with pyrrole in the presence of acetic acid to give the parent 1,1′-biazulene (5). Reaction of 5 with pyridine in the presence of Tf2O gave 3,3′-dihydropyridyl-1,1′-biazulene derivative 6. 3,3′-(4-Pyridyl)-1,1′-biazulene (7) was obtained by the reaction of 3 with KOH in EtOH at room temperature in good yield.  相似文献   

5.
The pyrolysis of 1,1-dichloroperfluorotetralin (4) in a stream of argon gives a mixture contained perfluoro-1-methyleneindan (1), perfluoro-3-methylindene (6), 1,1-dichloroperfluoroindan (2) and perfluoroindene (7), while copyrolysis of tetralin 4 with CHClF2 gives a mixture of compounds 1, 6 in the absence of compounds 2 and 7. 1-Chloro-2-(1-chloro-2,2-difluorovinyl)-3,4,5,6-tetrafluorobenzene (12) is formed in the pyrolysis of 1,1-dichloroperfluorobenzocyclobutene (5) in a stream of argon as well as in a stream of CHClF2.  相似文献   

6.
Chiral conjugated polymers P-1 and P-2 were synthesized by the polymerization of (R)-3,3′-diiodo-2,2′-bisbutoxy-1,1′-binaphthalene ((R)-M-1) and (S)-3,3′-diiodo-2,2′-bisbutoxy-1,1′-binaphthalene ((S)-M-1) with 2,5-bis(4-vinylphenyl)-1,3,4-oxadiazole (M-2) under Pd-catalyzed Heck coupling reaction, respectively. Both monomers and polymers were analysed by NMR, MS, FT-IR, UV, DSC-TG, fluorescent spectroscopy, GPC and CD spectra. The chiral conjugated polymers exhibit strong Cotton effect in their circular dichroism (CD) spectra indicating a high rigidity of polymer backbone. CD spectra of polymers P-1 and P-2 are almost identical and have opposite signs for their position. These polymers have strong blue fluorescence.  相似文献   

7.
Sanjib Gogoi 《Tetrahedron》2006,62(11):2715-2720
Starting from citraconic anhydride (3) a facile four-step synthesis of deoxyellipsoidone 8 has been reported with 37% overall yield. An elegant six-step access to naturally occurring cytotoxic ellipsoidone A (1) and ellipsoidone B (2) has been reported with good overall yields, via the conversion of itaconic anhydride (9) to the acetoxymethylmaleic anhydride (11), regioselective sodium borohydride reduction of anhydride 11 to acetoxymethylbutyrolactone 12, Knoevenagel condensation of lactone 12 with 5-methylfurfural, selenium dioxide induced oxidation of the formed butenolide 13 and an Amano PS catalyzed deacylation of the formed diacetoxybutenolide 14 as a pathway.  相似文献   

8.
A new non-C2-symmetrical antimony-phosphorous ligand, (±)-2-diphenyl-phosphano-2′-di(p-tolyl)stibano-1,1′-binaphthyl (BINAPSb) 3, has been prepared from 2-bromo-2′-diphenylphosphano-1,1′-naphthyl 4 via its borane complex 6, and could be resolved by the separation of a mixture of the diastereomeric palladium complexes 8A and 8B derived from the reaction of (±)-3 with optically active palladium reagent (S)-7. The enantiomerically pure BINAPSb 3 has proved to be highly effective in the palladium-catalyzed asymmetric hydrosilylation of styrene as a chiral auxiliary.  相似文献   

9.
Several new 1,1-disubstituted siloles containing substituents on the ring carbon atoms have been synthesized. The new siloles: 1,1-dihydrido-2,5-bis(trimethylsilyl)-3,4-diphenylsilole (5), 1,1-dihydrido-2,5-dimethyl-3,4-diphenylsilole (6), 1,1-dimethoxy-2,5-bis(trimethylsilyl)-3,4-diphenylsilole (7), 1,1-bis(4-methoxyphenyl)-2,5-bis(trimethylsilyl)-3,4-diphenylsilole (8), 1,1-dipropoxy-2,5-bis(trimethylsilyl)-3,4-diphenylsilole (9), and 1,1-dibromo-2,5-bis(trimethylsilyl)-3,4-diphenylsilole (13) were prepared from reactions originating from the previously reported, 1,1-bis(diethylamino)-2,5-bis(trimethylsilyl)-3,4-diphenylsilole (1) or 1,1-bis(diethylamino)-2,5-dimethyl-3,4-diphenylsilole (2). In addition, three other new organosilane byproducts were observed and isolated during the current study, bis(4-methoxyphenyl)bis(phenylethynyl)silane (11), bis(4-methoxyphenyl)di(propoxy)silane (12) and 1-bromo-4-bromodi(methoxy)silyl-1,4-bis(trimethylsilyl)-3,4-diphenyl-1,3-butadiene (14). Compounds 13 and 14 were characterized by X-ray crystallography and 14 is the first 1,1-dibromosilole whose solid state structure has been determined.  相似文献   

10.
The efficient and simple routes for the synthesis of various ferrocenyl derivatives from ferrocenylcarbinols and N,N′-thiocarbonyldiimidazole (TCDI) are described. It involves grinding the two substrates in a Pyrex tube with a glass rod at room temperature. The reaction of ferrocenylmethanol (1a) provided S,S-bis(ferrocenylmethyl)dithiocarbonate (1b), whose crystal structure and a plausible mechanism for its formation are also reported. The reaction of 1-ferrocenyl-1-phenylmethanol (2a) and 1-ferrocenylbutanol (2b) gave the products 2c and 2d, respectively. The reaction of ω-ferrocenyl alcohols 4-ferrocenylphenol (3a) and 6-ferrocenylhexan-1-ol (3b) yielded the products 3c and 3d, respectively. Reaction of 1,1′-ferrocenedimethanol (3e) afforded 3f in moderate yield, and by contrast, it was not similar to 1b. Reaction of [4-(trifluoromethyl)phenyl]methanol (4a) provided the thiocarbonate 4b in good yield.  相似文献   

11.
Mononuclear cobalt phthalocyanine (CoPc) substituted at the non-peripheral 8 and peripheral positions 9 with 1,1′-binaphthyl-8,8′-diol and ball-type dinuclear Co2Pc2 substituted at the non-peripheral 10 and peripheral 11 positions with the same substituent are reported. The complexes with 1,1′-binaphthol-bridges were prepared from the corresponding phthalonitriles 4-7. The effects of the position of substituent on spectral, electrochemical and spectroelectrochemical properties of these complexes were also explored. The mononuclear complexes 8 and 9 exhibited one metal reduction, one ring reduction and one ring oxidation. The redox properties of the ball-type complexes 10 and 11 exhibited two reduction processes assigned to [(CoIPc−2)2]2−/[(CoIPc−3)2]4− (I), (CoIIPc−2)2/[(CoIPc−2)2]2− (II) and one oxidation process assigned to [(CoIIIPc−2)2]2+/CoIIPc−2)2 (III). The ball-type complexes are much easier to oxidize and more difficult to reduce than the corresponding monomers 8 and 9.  相似文献   

12.
Both soluble guanylate cyclase (sGC) inhibitors ODQ 1 and NS2028 2 are synthesized via improved protocols. In the former case treating 3,4-dihydroquinoxalin-2(1H)-one oxime 8, which can be prepared in two steps from 1,2-benzenediamine, with 1,1′-carbonyldiimidazole (CDI) gives the dihydro-ODQ 10 that in the presence of KMnO4 oxidises to give ODQ 1 in an overall yield of 46% starting from 1,2-benzenediamine. In the latter case, the synthesis affords NS2028 2 from 2-amino-4-bromophenol 3 in three steps with an overall yield of 85% and avoids the need for chromatography. Furthermore, Suzuki-Miyaura reaction conditions are described that enable the preparation of 8-aryl and 8-heteroaryl derivatives of NS2028 directly from NS2028 2. Finally, demethylation of the 8-(methoxyphenyl) substituted analogues afforded the 8-(hydroxyphenyl) derivatives 40-42. All new products are fully characterised.  相似文献   

13.
(±)-Pterocarpan and analogues (4a-c) have been synthesized efficiently via the annulation of salicylaldehydes (1a, 1b and 1c) and o-methoxymethoxylphenylacetylene (2a), followed by a one-pot reduction and acidic cyclization of the ketones (3a-c). In addition, isoflavone derivatives (5a-c) have been synthesized rapidly, in two steps, via the annulation of salicylaldehyde (1a) and arylacetylenes (2b, 2c and 2d), followed by IBX/DMSO oxidation of the isoflavanones (3d, 3e and 3f).  相似文献   

14.
The discovery of a novel synthesis of new fused bicyclic isoxazoles, for example, N-methyl-3-phenyl-5,6-dihydro-4H-isoxazolo[3,4-c]azepin-8-amine (2a), N-methyl-3-phenyl-4,5-dihydroisoxazolo[3,4-c]pyridin-7-amine (2b) and N-methyl-3-phenyl-4H-pyrrolo[3,4-c]isoxazol-6-amine (2d) in high yield is reported. We speculate that the reaction proceeds via acid-mediated intramolecular 1,3-dipolar cycloaddition from 2-nitro-1,1-ethenediamines 1a,b,d.  相似文献   

15.
A series of chiral C1- and C2-symmetric ferrocenyl Schiff bases (1a-c), ferrocenyl aminoalcohols (2a), ferrocenylphosphinamides (2b-c), 1,1′-ferrocenyl-diol (3), and 1,1′-ferrocenyl-disulfonamide (4) were prepared and employed as base catalysts or as ligand for titanium(IV) complexes in the asymmetric addition of diethylzinc to aromatic aldehydes. High enantioselectivity up to almost 100% ee was achieved for the alkylation of benzaldehyde and p-methoxybenzaldehyde with 1 or 3. In contrast, however, the β-aminoalcohol (2a) and phosphinamides (2b and c) that are ubiquitous classes of base catalysts for this reaction proved inefficient in our hands, regardless of the types of substrates or reaction conditions. Comparative studies show that there exist various reaction parameters governing not only chemical yields but also optical yields. These include steric and electronic environment of the substrate, the solvent, the reaction temperature, and the nature of the ferrocene moieties.  相似文献   

16.
Direct oximation of 2-oxo-2-phenylacetate (3) gave the (Z)-methyl 2-(methoxyimino)-2-phenylacetate (1) in 71% yield, while the E oxime 2 was prepared from 3 in 65% yield via oxime isomerization of 2-(methoxyimino)-2-phenylacetic acid (5). Computational studies suggest that the isomerization of 5 is thermodynamically driven, while the direct oximation of ketoester 3 is kinetically controlled.  相似文献   

17.
A new series of titanium(IV) and zirconium(IV) amides have been prepared from the reaction between M(NMe2)4 (M = Ti, Zr) and C2-symmetric ligands, (R)-2,2′-bis(pyridin-2-ylmethylamino)-6,6′-dimethyl-1,1′-biphenyl (2H2), (R)-2,2′-bis(pyrrol-2-ylmethyleneamino)-6,6′-dimethyl-1,1′-biphenyl (3H2), (R)-2,2′-bis(diphenylphosphinoylamino)-6,6′-dimethyl-1,1′-biphenyl (4H2), (R)-2,2′-bis(methanesulphonylamino)-6,6′-dimethyl-1,1′-biphenyl (5H2), (R)-2,2′-bis(p-toluenesulphonylamino)-6,6′-dimethyl-1,1′-biphenyl (6H2), and C1-symmetric ligands, (R)-2-(diphenylthiophosphoramino)-2′-(dimethylamino)-6,6′-dimethyl-1,1′-biphenyl (7H) and (R)-2-(pyridin-2-ylamino)-2′-(dimethylamino)-6,6′-dimethyl-1,1′-biphenyl (8H), which are derived from (R)-2,2′-diamino-6,6′-dimethyl-1,1′-biphenyl. Treatment of M(NMe2)4 with 1 equiv. of N4-ligand, 2H2 or 3H2 gives, after recrystallization from an n-hexane solution, the chiral zirconium amides (2)Zr(NMe2)2 (9), (3)Zr(NMe2)2 (11), and titanium amide (3)Ti(NMe2)2 (10), respectively, in good yields. Reaction of Zr(NMe2)4 with 1 equiv of diphenylphosphoramide 4H2 affords the chiral zirconium amide (4)Zr(NMe2)2 (12) in 85% yield. Under similar reaction conditions, treatment of Ti(NMe2)4 with 1 equiv. of sulphonylamide ligand, 5H2 or 6H2 gives, after recrystallization from a toluene solution, the chiral titanium amides (5)Ti(NMe2)2·0.5C7H8 (13·0.5C7H8) and (6)Ti(NMe2)2 (15), respectively, in good yields, while reaction of Zr(NMe2)4 with 1 equiv. of 5H2 or 6H2 gives the bis-ligated complexes, (5)2Zr (14) and (6)2Zr (16). Treatment of M(NMe2)4 with 2 equiv. of diphenylthiophosphoramide ligand 7H or N3-ligand 8H gives, after recrystallization from a benzene solution, the bis-ligated chiral zirconium amides (7)2Zr(NMe2)2 (17) and (8)2Zr(NMe2)2 (19), and bis-ligated chiral titanium amide (8)2Ti(NMe2)2 (18), respectively, in good yields. All new compounds have been characterized by various spectroscopic techniques, and elemental analyses. The solid-state structures of complexes 10, 12, 13, and 17-19 have further been confirmed by X-ray diffraction analyses. The zirconium amides are active catalysts for the asymmetric hydroamination/cyclization of aminoalkenes, affording cyclic amines in good to excellent yields with moderate ee values, while the titanium amides are not.  相似文献   

18.
Cerpegin (1) was synthesized through a ‘one-pot’ reaction in 71% overall yield. Lithiation of commercially available 2-methoxynicotinic acid (2) as its lithium salt using LTMP, followed by addition of acetone at low temperature and a specific acidic treatment of the intermediate 3 thus obtained, gave the 1,1-dimethyl-3,4-dioxo-1,3,4,5-tetrahydrofuro[3,4-c]pyridine (4). The latter was finally selectively alkylated using methyl iodide and caesium carbonate to afford cerpegin (1).  相似文献   

19.
2,2″-Bis(N,N-dimethylaminosulfonyl)-1,1″-biferrocene (6), a precursor of biferrocenes annulated with 1,2-dithiin and 1,2-dithiin 1,1-dioxides, was prepared by a sequence of selective ortho-lithiation and dimerization reaction from N,N-dimethylaminosulfonylferrocene. New biferrocenes annulated with 1,2-dithiin (1) and 1,2-dithiin 1,1-dioxides (2) and (3) were successfully synthesized in satisfactory yields by the reaction of compound 6 with lithium aluminum hydride followed by treatment with chlorotrimethylsilane. The electrochemical properties of the biferrocenes (1)-(3) were furnished by voltammetric studies.  相似文献   

20.
Lipase-catalyzed acylation of 2-hydroxyiminomethyl-1,1′-binaphthyl [(±)-1] and hydrolysis of 2-acetoxyiminomethyl-1,1′-binaphthyl [(±)-2] yielded optically active oximes 1 and 2 with high enantiomeric excess. Successful synthesis of the optically active aldehyde 4 from chiral O-acetyl oxime 2 occurred without a decrease of enantiomeric excess.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号