首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactions between [Fe(η-C5H5)(MeCO)(CO)(L)], L = PPh3 (1), PMe3 (2), PPhMe2 (3), PCy3 (4), CO (5), and B(C6F5)3 give new complexes [Fe(η-C5H5){MeCOB(C6F5)3}(CO)(L)] L = PPh3 (7), PMe3 (8), PPhMe2 (9), PCy3 (10), CO (11), where B(C6F5)3 coordinates selectively to the O-acyl groups. Hydrolysis of 7 gives [Fe(η-C5H5){HOB(C6F5)3}(CO)(PPh3)] (6). The X-ray structures of 6, 8 and 11 have been determined. Calculations, using density functional theory, demonstrate that the charge transfer to the acyl group on Lewis acid coordination is more significant in the σ than the π system. Both effects lead to a lengthening of the acyl C-O bond thus π populations cannot be inferred from the distance changes.  相似文献   

2.
A metal-free hydrogenation of 2-quinolinecarboxylates has been realized by using 5?mol% of B(C6F5)3 as catalyst. A variety of tetrahydroquinolines were obtained in 57–99% yields. An attempt for the asymmetric hydrogenation with chiral boron Lewis acids generated from chiral dienes afforded very low ee’s.  相似文献   

3.
A new chemical oxidant [N(4-C6H4Br)3][B(C6F5)4], was prepared and used to synthesize [Fe(C5H5)2][B(C6F5)4]. The crystal structure of [Fe(C5H5)2][B(C6F5)4] was determined.  相似文献   

4.
Pentafluorophenylation of perfluoroarenes with C6F5Si(CH3)3 was investigated by using NMR and MALDI-TOF-MS techniques. Successive multiple pentafluorophenylation easily occurred not only on the para-position but also on the ortho-positions to provide perfluorinated p-phenylene and m-phenylene compounds. The perfluoroarenes having electron-withdrawing substituents provided oligo- to poly-(phenylene)s depending on the added amounts of C6F5Si(CH3)3, while the perfluoroarenes having electron-donor substituents gave H(C6F4)nF polymers produced from C6F5H, which was the decomposed product of C6F5Si(CH3)3.  相似文献   

5.
(C6F5)2Te reacts with elemental fluorine step by step to form the tellurium fluorides (C6F5)2TeF2, (C6F5)2TeF4 and (C6F11)2TeF4, which can be isolated in pure states. The intermediates (C6F11?2n)2TeF4 (n = 1,2) are detected spectroscopically. (C6F5)2TeF2 is also formed from the reaction of (C6F5)2Te with XeF2. The preparations, properties and 19F n.m.r. spectra of these new compounds are discussed, the mass and vibrational spectra are described.  相似文献   

6.
The X-ray characterized four-coordinate aminophenolate aluminium complex {6-(CH2NMe2)-2-CPh3-4-Me-C6H2O}Al(Me)(Cl) (1), which is readily available by reaction of the corresponding aminophenolate Li salt with MeAlCl2, slowly reacts with B(C6F5)3 to yield a 1/1 mixture of the Al methyl cation {6-(CH2NMe2)-2-CPh3-4-Me-C6H2O}Al(Me)(THF)+ (2, as salt) and the Al dichloro derivative {6-(CH2NMe2)-2-CPh3-4-Me-C6H2O}AlCl2 (3). This reaction most likely proceeds via a Me abstraction/ligand exchange sequence.  相似文献   

7.
[Na{Ti2(C5Me5)2F7}] (1) was prepared from sodium fluoride and [{Ti(C5Me5)F3}2] [H.W. Roesky, et al., Angew. Chem. Int. Ed. Engl. 31 (1992) 864-866]. The solid-state 1 consists of a polymeric chain of two rows of dititanate anions [Ti2(C5Me5)2F7] connected by sodium ions in the middle of the chain. Each sodium ion is coordinated by five fluorine atoms from three [Ti2(C5Me5)2F7] anions. The variable-temperature 19F NMR of CD3CN solution of 1 revealed interconversions of monomeric species [Na(CD3CN)n{Ti2(C5Me5)2F7}] (1solv) with different number of CD3CN ligands on the sodium ion. The addition of HMPA to the CD3CN solution of 1 allows 19F NMR observation of 1·HMPA (1a) and 1·HMPA·CD3CN (1b) in the slow exchange. The solid-state structure of [NaTi6(C5Me5)5F20(H2O)]·(THF) (2·THF) reveals the sodium ion coordinated by four fluorine atoms from the anion [Ti2(C5Me5)2F7] and by three fluorine atoms from the cluster [Ti4(C5Me5)3F13(H2O)].  相似文献   

8.
Ampoule reactions of C70 with n- and i-C3F7I were carried out at 250-310 °C. Two step HPLC separations allowed the isolation of several C70(n-C3F7)4-8 and C70(i-C3F7)4 compounds. Crystal and molecular structures of C70(n-C3F7)8-V, C70(n-C3F7)6O, C70(n-C3F7)4, and three isomers of C70(i-C3F7)4 have been determined by X-ray crystallography using synchrotron radiation. Molecular structures of the new compounds were compared with the known examples and discussed in terms of addition patterns and relative energies of their formation.  相似文献   

9.
A new method for the preparation of bis(perfluoroorgano) zinc compounds is described: CF3I and C6F5I react with dialkylzinc in the presence of a Lewis base quantitatively to give (CF3)2Zn and (C6F5)2Zn complexes, while the analogous reactions with C2F5I and iC3F7I do not yield the pure compounds. 1H, 19F n.m.r, i.r. and Raman spectra are presented.  相似文献   

10.
One isomer of C60(i-C3F7)8, three isomers of C60(i-C3F7)6, and the first mixed perfluoroalkylated fullerene, C60(CF3)2(i-C3F7)2, have been isolated by HPLC from a mixture prepared by reaction of C60 with heptafluoroisopropyl iodide in a glass ampoule at 260-290 °C. The molecular structures of the four new compounds have been determined by means of X-ray single crystal diffraction partially also by use of synchrotron radiation. Theoretical calculations at the DFT level of theory have been employed to rationalize the energetics of isomers and of C60-Rf binding.  相似文献   

11.
The crystal and molecular structure of hexaphenylditin selenide (C6H5)3SnSeSn(G6H5)3 was determined by X-ray diffraction data and was refined to R  0.055. The compound is monoclinic, space group P21, with a  9.950(4), b  18.650(7), c  18.066(6) Å, β  106.81(4)°, Z  4. The two molecules in the asymmetric unit differ slightly in their conformations, both having approximate C2 symmetry. Bond lengths and angles are: SnSe 2.526 (2.521(3) ? 2.538(3)) Å; SnC 2.138 (2.107(16)?2.168(19)) Å; SnSeSn 103.4(1)°, 105.2(1)°. There are only slight angular distortions at the SnSeC3 tetrahedra (SeSnC angles: 104.3(5)?114.8(4)°). The bond data indicate essentially single bonds around the Sn atoms.  相似文献   

12.
A facile synthesis of symmetrical and unsymmetrical ethers is achieved by reductive coupling of carbonyl compounds with alkoxysilanes. This reaction is performed using inert polymethylhydrosiloxane as the hydride source and B(C6F5)3 as the catalytic activator of the PMHS.  相似文献   

13.
14.
en Two differnt crystal modifications of hexaphenyldigermanium sulfide (C6H5GeSGe(C6H5)3 (I and II were obtained by crystallization from hot benzene/methanol or form ethanol at 20°C. Single crystal X-ray structural analyses for both I (low temperature data at ?130°C) and II (at 20°C) (I, R = 0.046; II, R = 0.048) were performed. I is monoclinic, P21/c, with a = 11.020(3), b = 15.473(3), c 18.606(3) »,π = 106.92(2)°, Z = 4; II is orthorhombic, P212121, with a = 2.617(2), b = 17.345(3), c = 18.408(3) », Z = 4.The molecules have different conformeric structures with respect to a rotation of the (C6H6)3Ge groups around the Ge bonds with very similar bond lenghts and angles. Bond data for I(II) are: GeS 2.212(1) and 2.261(1) » (2.227(2) and 2.240(2) »); GeC 1.933(4) ? 1.971(4), mean 1.945(5) » (1.931(7)?1.954(7), mean 1.943(4) »); GeSGe 111.2(1)° (110.7(1)°). The Ge bond lenghts are comparable to those in thiogermanates and do not indicate significant π-bond contributions.  相似文献   

15.
合成了5种不同取代基的炔类化合物Mes2HSiC≡CPh(1,Mes=2,4,6-Me3C6H2)、[tBuC(NAr)2]GeC≡CPh(2,Ar=2,6-iPr2C6H3)、[PhC(NtBu)2]SnC≡CPPh2(3)、[HC(CMe)2(NAr)2]Sn C≡CPPh2(4)和[HC(CMe)2(NAr)2]ZnC≡CPPh2(5),研究了这些化合物与B(C6F5)3的反应.在与B(C6F5)3的反应中,1和2均发生1,1-碳硼化反应生成烯烃化合物(Ph)(Mes2HSi)C=C(C6F5)B(C6F5)2 (6)和{[tBuC(NAr)2]Ge}(Ph)C=C(C6F5)B(C6F5)2 (7), 7是一种GeⅡ/B松散Lewis酸碱对化合物;3~5则都发生B(C6F5)3与配体金属基的位置交换、进而配体金属基转换键合PPh2的反应,分别生成新颖的分子内双性离子炔烃化合物[PhC(NtBu)2]SnP(Ph2)C≡CB(C6F5)3 (8)、[HC(CMe)2(NAr)2]SnP(Ph2)C≡CB(C6F5)3(9)、[HC(CMe)2(NAr)2]ZnP(Ph2)C≡CB(C6F5)3 (10).文中还讨论了反应机理.  相似文献   

16.
The new heteroleptic mercury(II) complex PhHgN(SiMe3)2(1) reacts with the strong Brønsted acid [H(OEt2)2][H2N{B(C6F5)3}2] with cleavage of a N-Si bond to give [C6H5Hg(H2NSiMe3)][H2N{B(C6F5)3}2] (2), a phenyl-mercury(II) cation stabilised by a primary amine and a non-coordinating counter-anion. Attempts to generate donor-free aryl mercury cations were not successful. The crystal structure of 2 · CH2Cl2 shows short π-bonding interactions between the metal and the phenyl ring of a neighbouring cation; the geometry about the mercury(II) atom is nearly linear. The X-ray structures of the new salts [H2N(SiMe3)2 · H3NSiMe3][B(C6F5)4]2 and [Et3O][H2N{B(C6F5)3}2] · CH2Cl2 are also presented.  相似文献   

17.
The relative fluoride donor ability: C6F5BrF2 > C6F5IF2 > C6F5IF4 was outlined from reactions with Lewis acids of graduated strength in different solvents. Fluoride abstraction from C6F5HalF2 with BF3·NCCH3 in acetonitrile (donor solvent) led to [C6F5HalF·(NCCH3)n][BF4]. The attempted generation of [C6F5BrF]+ from C6F5BrF2 and anhydrous HF or BF3 in weakly coordinating SO2ClF gave C6F5Br besides bromoperfluorocycloalkenes C6BrF7 and 1-BrC6F9. In reactions of C6F5IF2 with SbF5 in SO2ClF the primary observed intermediate (19F NMR, below 0 °C) was the 4-iodo-1,1,2,3,5,6-hexafluorobenzenium cation, which converted into C6F5I and 1-IC6F9 at 20 °C. The reaction of C6F5IF4 with SbF5 in SO2ClF below −20 °C gave the cation [C6F5IF3]+ which decomposed at 20 °C to C6F5I, 1-iodoperfluorocyclohexene, and iodoperfluorocyclohexane. Principally, the related perfluoroalkyl compound C6F13IF4 showed a different type of products in the fast reaction with AsF5 in CCl3F (−60 °C) which resulted in C6F14. Intermediate and final products of C6F5HalFn−1 (n = 3, 5) with Lewis acids were characterized by NMR in solution. Stable solid products were isolated and analytically characterized.  相似文献   

18.
B(C6F5)3 as a catalyst and polymethylhydrosiloxane as a hydride source have been employed for the reductive dehydroxylation of Baylis-Hillman adducts wherein the hydride adds in an SN2′ manner onto the unactivated allyl alcohol moiety with concomitant elimination of the hydroxy group along with double bond migration. The products formed were found to be E in the case of ester adducts and Z in the case of nitrile adducts.  相似文献   

19.
Tris(pentafluorophenyl)borane [B(C6F5)3] has been used as an efficient catalyst for reductive alkylation of alkoxy benzenes using aldehydes as an alkylating agent in the presence of polymethylhydrosiloxane (PMHS). Various alkylated trimethoxybenzene derivatives have been prepared in good to high yields. In addition, B(C6F5)3 was also used as a catalyst for the reaction of electron-rich arenes with aldehydes to obtain triarylmethanes. The use of reductive alkylation protocol for the synthesis of an isochroman and tetrahydroisoquinoline derivatives has also been demonstrated.  相似文献   

20.
The reactions of the half-sandwich molybdenum(III) complexes CpMo(η4-C4H4R2)(CH3)2, where Cp=η5-C5H5 and R=H or CH3, with equimolar amounts of B(C6F5)3 have been investigated in toluene. EPR monitoring shows the formation of an addition product which does not readily react with Lewis bases such as ethylene, pyridine, or PMe3. The analysis of the EPR properties and the X-ray structure of a decomposition product obtained from dichloromethane, [CpMo(η4-C4H6)(μ-Cl)(μ-CH2)(O)MoCp][CH3B(C6F5)3], indicate that the borane attack has occurred at the methyl position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号