首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mononuclear neutral arene ruthenium(II) β-diketonato complexes of the general formula (η6-arene)Ru(LL)Cl [LL = 1-phenyl-3-methyl-4-benzoyl pyrazol-5-one (L1), arene = C6H6 (1), p-iPrC6H4Me (2), C6Me6 (3); arene = p-iPrC6H4Me, LL = 1-benzoylacetone (L3) (8); arene = p-iPrC6H4Me, LL = dibenzoylmethane (L4) (9)] have been synthesized and their subsequent substitution reactions with NaN3 in alcohol at room temperature yielded the corresponding neutral terminal azido complexes (η6-arene)Ru(LL)N3 [LL = 1-phenyl-3-methyl-4-benzoyl pyrazol-5-one (L1), arene = C6H6 (4), p-iPrC6H4Me (6), C6Me6 (7); arene = p-iPrC6H4Me, LL = dibenzoylmethane (L4) (10)] as well as a cationic complex [(η6-p-iPrC6H4Me)Ru(L4) (PPh3)]BF4 (12) with PPh3. The [3 + 2] cycloaddition reaction of selective azido complexes with the activated alkynes dimethyl and diethyl acetylenedicarboxylates produced the arene triazolato complexes [(η6-arene)Ru(LL){N3C2(CO2R)2}] [arene = p-iPrC6H4Me, LL = L1, R = Me (13); arene = C6Me6, LL = L1, R = Me (14); arene = C6Me6, LL = acetyl acetone (L2), R = Me (15); arene = C6Me6, LL = L3, R = Me (16); arene = p-iPrC6H4Me, LL = L1, R = Et (17); arene = C6Me6, LL = L1, R = Et (18); arene = C6Me6, LL = L2, R = Et (19); arene = C6Me6, LL = L3, R = Et (20)]. With fumaronitrile the reaction yielded the triazoles [(η6-arene)Ru(LL)(N3C2HCN)] [arene = p-iPrC6H4Me, LL = L1 (21), arene = C6Me6, LL = L1 (22), arene = C6Me6, LL = L2 (23), arene = C6Me6, LL = L3 (24)]. In the above triazolato complexes only N(2) isomer was obtained. The complexes were characterized on the basis of spectroscopic data. Crystal structure of representatives complexes were determined by single crystal X-ray diffraction.  相似文献   

2.
The mononuclear cations of the general formula [(η6-arene)RuCl(dpqMe2)]+ (dpqMe2 = 6,7-dimethyl-2,3-di(pyridine-2-yl)quinoxaline; arene = C6H6, 1; C6H5Me, 2; p-PriC6H4Me, 3; C6Me6, 4) as well as the dinuclear dications [(η6-arene)2Ru2Cl2(μ-dpqMe2)]2+ (arene = C6H6, 5; C6H5Me, 6; p-PriC6H4Me, 7; C6Me6, 8) have been synthesised from 6,7-dimethyl-2,3-di(pyridine-2-yl)quinoxaline (dpqMe2) and the corresponding chloro complexes [(η6-C6H6)Ru(μ-Cl)Cl]2, [(η6-C6H5Me)Ru(μ-Cl)Cl]2, [(η6-p-PriC6H4Me)Ru(μ-Cl)Cl]2 and [(η6-C6Me6)Ru(μ-Cl)Cl]2, respectively. The X-ray crystal structure analyses of [1][PF6], [3][PF6] and [6][PF6]2 reveal a typical piano-stool geometry around the metal centre; in the dinuclear complexes the two chloro ligands, with respect to each other, are found to be trans oriented.  相似文献   

3.
The oxidative addition of C6H4-1,4-I2 (1) to Pd(PPh3)4 (2) gives mononuclear trans-(Ph3P)2Pd(C6H4-4-I)(I) (3), which can be converted to trans-(Ph3P)2Pd(C6H4-4-I)(OTf) (5) by its reaction with [AgOTf] (4). Complex 5 can be used in the high-yield preparation of a series of unique cationic mono- and dinuclear palladium complexes of structural type [trans-(Ph3P)2Pd(C6H4-4-I)(L)]+ (7, L = C4H4N2; 9a, L = C5H4N-4-CN; 9b, L = NC-4-C5H4N) and [trans-(C6H4-4-I)(Ph3P)2Pd ← NN → Pd(PPh3)2(C6H4-4-I)]2+ (14a, NN = C6H4-1,4-(CN)2; 14b, NN = (C6H4-4-CN)2; 14c, NN = 4,4′-bipyridine (=bipy)). Complexes 7, 9 and 14 rearrange in solution to give [trans-(Ph3P)2Pd(C6H4-4-PPh3)(L)]2+ (10, L = C4H4N2; 12a, L = C5H4N-4-CN; 12b, L = NC-4-C5H4N) and [trans-(C6H4-4-PPh3)(Ph3P)2Pd ← NN → Pd(PPh3)2(C6H4-4-PPh3)]4+ (15a, NN = C6H4-1,4-(CN)2; 15b, NN = (C6H4-4-CN)2) along with {[(Ph3P)2(Ph3P-4-C6H4)Pd(μ-I)]2}2+ (11).The solid state structures of 3, 9a, 10, 11 and 15b are reported. Most characteristic for all complexes is the square-planar coordination geometry of palladium with trans-positioned PPh3 ligands. In 3 the iodide and the 4-iodo-benzene are linear oriented laying with the palladium atom on a crystallographic C2 axes. In 9a this symmetry is broken by steric interactions of the PPh3 ligands with the 4-cyanopyridine and 4-iodobenzene groups. Compound 11 contains two μ-bridging iodides with different Pd-I separations showing that the ligand induces a stronger trans-influence than PPh3. In 15b, the Ph3PC6H4Pd ← NCC6H4C6H4CN → PdC6H4PPh3 building block is rigid-rod structured with the C6H4 units perpendicular oriented to the Pd coordination plane, while the biphenylene connecting moiety is in-plane bound.  相似文献   

4.
o-Phenylene-bridged trimethylcyclopentadienyl/amido titanium complexes [(η5-2,3,5-Me3C5H)C6H4NR-κN]TiCl2 (18, R = CH3; 19, R = CH2CH3; 20, R = CH2C(CH3)3; 21, R = CH2(C6H11)) and zirconium complexes {[(η5-2,3,5-Me3C5H)C6H4NR-κN]ZrCl-μCl}2 (22, R = CH3; 23, R = CH2CH3; 24, R = CH2C(CH3)3; 25, R = CH2(C6H11); 26, R = C6H11; 27, R = CH(CH2CH3)2) are prepared via a key step of the Suzuki-coupling reaction between 2-dihydroxyboryl-3-methyl-2-cyclopenten-1-one (2) and the corresponding bromoaniline compounds. The molecular structures of titanium complexes 18 and 19 and dinuclear zirconium complexes 24 and 26 were confirmed by X-ray crystallography. The Cp(centroid)-Ti-N and Cp(centroid)-Zr-N angles are smaller, respectively, than those observed for the Me2Si-bridged complex [Me2Si(η5-Me4C5)(NtBu)]TiCl2 and its Zr-analogue, indicating that the o-phenylene-bridged complexes are more constrained than the Me2Si-bridged complex. Titanium complex 19 exhibits comparable activity and comonomer incorporation to the CGC ([Me2Si(η5-Me4C5)(NtBu)]TiCl2) in ethylene/1-octene copolymerization. Complex 19 produces a higher molecular-weight polymer than CGC.  相似文献   

5.
The reaction of [CpRu(PPh3)2Cl] and [CpOs(PPh3)2Br] with chelating 2-(2′-pyridyl)imidazole (N ∩ N) ligands and NH4PF6 yields cationic complexes of the type [CpM(N ∩ N)(PPh3)]+ (1: M = Ru, N ∩ N = 2-(2′-pyridyl)imidazole; 2: M = Ru, N ∩ N = 2-(2′-pyridyl)benzimidazole; 3: M = Ru, N ∩ N = 2-(2′-pyridyl)-4,5-dimethylimidazole; 4: M = Ru, N ∩ N = 2-(2′-pyridyl)-4,5-diphenylimidazole; 5: M = Os, N ∩ N = 2-(2′-pyridyl)imidazole; 6: M = Os, N ∩ N = 2-(2′-pyridyl)benzimidazole). They have been isolated and characterized as their hexafluorophosphate salts. Similarly, in the presence of NH4PF6, [Cp∗Ir(μ-Cl)Cl]2 reacts in dry methanol with N ∩ N chelating ligands to afford in excellent yield [Cp∗Ir(N ∩ N)Cl]PF6 (7: N ∩ N = 2-(2′-pyridyl)imidazole; 8: N ∩ N = 2-(2′-pyridyl)benzimidazole). All the compounds have been characterized by infrared and NMR spectroscopy and the molecular structure of [1]PF6, [2]PF6 and [7]PF6 by single-crystal X-ray structure analysis.  相似文献   

6.
The dinuclear bis(ferrocenecarboxylato) complex Ru2(CO)4(μ-OOCFc)2(py)2 (Fc = ferrocenyl, py = pyridine) was found to react with aromatic diimines (2,2′-dipyridyl, 4,4′-dimethyl-2,2′-dipyridyl, 1,10-phenanthroline, 5-nitro-1,10-phenanthroline, and 5-amino-1,10-phenanthroline) in methanol to give the cationic diruthenium complexes [(N∩N)2Ru2(CO)2(μ-CO)2(μ-OOCFc)]+ (1: N∩N = 2,2′-dipyridyl, 2: N∩N = 4,4′-dimethyl-2,2′-dipyridyl, 3: N∩N = 1,10-phenanthroline, 4: N∩N = 5-nitro-1,10-phenanthroline, 5: N∩N = 5-amino-1,10-phenanthroline), which have been isolated as the hexafluorophosphate salts. The molecular structure of 3, solved by single-crystal X-ray analysis of the tetraphenylborate salt [3][BPh4], shows a diruthenium backbone bridged by two carbonyl and by one ferrocenecarboxylato ligand, the two 1,10-phenanthroline ligands being in the axial positions. Cyclic voltammetry in dichloromethane reveals for all compounds two successive oxidations due to ferrocene/ferrocenium redox couple and oxidation of the diruthenium core.  相似文献   

7.
Styrene polymerization is investigated with neutral and cationic Ni(II) complexes, i.e. Ni(bipy)Me2, 1, Ni(bipy)Br2, 2, Ni(phen)Br2, 3, or Ni(Me2phen)Br2, 4, Ni(acac)2, 5, (bipy = 2,2′-bipyridine, phen = phenanthroline, Me2phen = 2,9-dimethyl-1,10-phenanthroline, acac = acetylacetonate), activated by [NHMe2Ph][B(C6F5)4] or B(C6F5)3 as cocatalysts, in the presence of AlMe3. The influence on the polystyrene features and the reaction kinetics of the nickel complex and boron activator, the Al/Ni or B/Ni molar ratios as well as the monomer concentration are studied. Catalytic systems derived from 2, 3 or 5 and [NHMe2Ph][B(C6F5)4] at a Ni:B:Al ratio of 1:1:5 are the most efficient at room temperature.  相似文献   

8.
The violet ruthenium complex [(η5-C5Me5)Ru(η5-C3B2Me4R1)] (2a, R1 = Me) reacts with terminal alkynes R2CCH to give yellow 4-borataborepine compounds [(η5-C5Me5)Ru{η7-(MeC)3(R1B)2(R2C2H)}] (4c, R1 = Me, R2 = Ph; 4d, R1 = Me, R2 = SiMe3; 4e, R1 = Me, R2 = H). The insertion of alkynes into the folded C3B2 heterocycle of 2a causes some steric hindrance, which yields with elimination of the distant boranediyl group the corresponding boratabenzene complexes 5 as byproducts. The analogous reactions with internal alkynes R2CCR2 proceed slowly and afford predominantly the boratabenzene complexes [(η5-C5Me5)Ru{η6-(MeC)3(MeB)(R2C)2}] (5f, R2 = Et, 5g, R2 = p-tolyl), respectively. In the latter case, three byproducts are formed: methylboronic acid and 1,2,3,4-tetra-p-tolyl-1,3-butadiene (9) due to hydrolysis of the postulated 2,3,4,5-tetra-p-tolyl-1-methylborole (10) and unexpectedly, the cationic triple-decker complex [{(η5-C5Me5)Ru}2{μ,η7-(MeC)3(MeB)2(CH)2}]Cl (11) having two separated CH groups. The new compounds were characterized by NMR, MS, and single-crystal X-ray studies of 4c, 5f, 9 and 11.  相似文献   

9.
10.
Two series of new divalent organolanthanide complexes with the general formula [η51-{1-R-3-(C5H9OCH2)C9H5}]2LnII (R = H, Ln = Yb (3); R = Me3Si, Ln = Yb (4); R = H, Ln = Eu (5); R = Me3Si, Ln = Eu (6)) were prepared by reactions of 2 equiv. of 1-R-3-(C5H9OCH2)C9H6 (R = H (1), R = Me3Si (2)) with the lanthanide(III) amides [(Me3Si)2N]3Ln(μ-Cl)Li(THF)3 (Ln = Yb, Eu) via a one-electron reductive elimination process. Recrystallization of 6 from n-hexane afforded [η51-(C5H9OCH2C9H5SiMe3)]2EuII · (C6H14)0.5 (7). All compounds were fully characterized by elemental analyses, and spectroscopic methods. The structures of complexes 4 and 7 were additionally determined by single-crystal X-ray analyses. The catalytic activity of the complexes on methyl methacrylate and ε-caprolactone polymerization was studied, and the temperatures, substituents on the indenyl ring, and solvents effects on the catalytic activity of the complexes were examined.  相似文献   

11.
The reaction of (η5-C9H2Me5)Rh(1,5-C8H12) (1) with I2 gives the iodide complex [(η5-C9H2Me5)RhI2]2 (2). The solvate complex [(η5- C9H2Me5)Rh(MeNO2)3]2+ (generated in situ by treatment of 2 with Ag+ in nitromethane) reacts with benzene and its derivatives giving the dicationic arene complexes [(η5-9H2Me5)Rh(arene)]2+ [arene = C6H6 (3a), C6Me6 (3b), C6H5OMe (3c)]. Similar reaction with the borole sandwich compound CpRh(η5-C4H4BPh) results in the arene-type complex [CpRh(μ-η56-C4H4BPh)Rh(η5-C9H2Me5)]2+ (4). Treatment of 2 with CpTl in acetonitrile affords cation [(η5-C9H2Me5)RhCp]+ (5). The structure of [3c](BF4)2 was determined by X-ray diffraction. The electrochemical behaviour of complexes prepared was studied. The rhodium-benzene bonding in series of the related complexes [(ring)Rh(C6H6)]2+ (ring = Cp, Cp, C9H7, C9H2Me5) was analyzed using energy and charge decomposition schemes.  相似文献   

12.
13.
Two series of new organolanthanide(II) complexes with general formula {η51-[1-R-3-(2-C5H4NCH2)C9H5]}2Ln(II) (R = H-, Ln = Yb (3), Eu (4); R = Me3Si-, Ln = Yb (5), Eu (6)), and {η51-[1-R-3-(3-C5H4NCH2)C9H5]}2Ln(II) (R = H-, Ln = Yb (9), Eu (10); R = Me3Si-, Ln = Yb (11), Eu (12)) were synthesized by silylamine elimination with one-electron reductive reactions of lanthanide(III) amides [(Me3Si)2N]3Ln(μ-Cl)Li(THF)3 (Ln = Yb, Eu) with 2 equiv. 1-R-3-(2-C5H4NCH2)C9H6 (R = H (1), Me3Si- (2)) or 1-R-3-(3-C5H4NCH2)C9H6 (R = H (7), Me3Si- (8)) in good yields. All the complexes were fully characterized by elemental analyses and spectroscopic methods. Complexes 3 and 5 were additionally characterized by single-crystal X-ray diffraction study. The catalytic activities of the complexes for MMA polymerization were examined. It was found that complexes with 3-pyridylmethyl substituent on the indenyl ligands could function as single-component MMA polymerization catalysts with good activities, while the complexes with 2-pyridylmethyl substituent on the indenyl ligands cannot catalyze MMA polymerization. The temperatures and solvents effect on the MMA polymerization have also been examined.  相似文献   

14.
A number of bridged half-sandwich titanium complexes [η51-2-C5H4CHPh-4-R1-6-R2C6H2O]TiCl2 [R1 = H (5), Me (6), tBu (78); R2 = H (67), tBu (58)] were synthesized from the reaction of their corresponding trimethylsilyl substituted ligand precursors 2-Me3SiC5H4CHPh-4-R1-6-R2C6H2OSiMe3 [R1 = H (1), Me (2), tBu (34); R2 = H (23), tBu (14)] with TiCl4 in hexane. All new complexes were characterized by 1H and 13C NMR spectroscopy. Molecular structures of complexes 5 and 8 were determined by single crystal X-ray diffraction analysis. Upon activation with AliBu3/Ph3CB (C6F5)4, complexes 5-8 exhibit reasonable catalytic activity for ethylene polymerization and copolymerization with 1-hexene, producing polyethylene and poly(ethylene-co-1-hexene) with moderate molecular weights.  相似文献   

15.
The reactions of the trimethylsiloxychlorosilanes (Me3SiO)RR′SiCl (1a-h: R′ = Ph, 1a: R = H, 1b: R = Me, 1c: R = Et, 1d: R = iPr, 1e: R = tBu, 1f: R = Ph, 1g: R = 2,4,6-Me3C6H2 (Mes), 1h: R = 2,4,6-(Me2CH)3C6H2 (Tip); 1i: R = R′ = Mes) with lithium metal in tetrahydrofuran (THF) at −78 °C and in a mixture of THF/diethyl ether/n-pentane in a volume ratio 4:1:1 at −110 °C lead to mixtures of numerous compounds. Dependent on the substituents silyllithium derivatives (Me3SiO)RR′SiLi (2b-i), Me3SiO(RR′Si)2Li (3a-g), Me3SiRR′SiLi (4a-h), (LiO)RR′SiLi (12e, 12g-i), trisiloxanes (Me3SiO)2SiRR′ (5a-i) and trimethylsiloxydisilanes (6f, 6h, 6i) are formed. All silyllithium compounds were trapped with Me3SiCl or HMe2SiCl resulting in the following products: (Me3SiO)RR′SiSiMe2R″ (6b-i: R″ = Me, 7c-i: R″ = H), Me3SiO(RR′Si)2SiMe2R″ (8a-g: R″ = Me, 9a-g: R″ = H), Me3SiRR′SiSiMe2R″ (10a-h: R″ = Me, 11a-h: R″ = H) and (HMe2SiO)RR′SiSiMe2H (13e, 13g-i). The stability of trimethylsiloxysilyllithiums 2 depends on the substituents and on the temperature. (Me3SiO)Mes2SiLi (2i) is the most stable compound due to the high steric shielding of the silicon centre. The trimethylsiloxysilyllithiums 2a-g undergo partially self-condensation to afford the corresponding trimethylsiloxydisilanyllithiums Me3SiO(RR′Si)2Li (3a-g). (Me3)Si-O bond cleavage was observed for 2e and 2g-i. The relatively stable trimethylsiloxysilyllithiums 2f, 2g and 2i react with n-butyllithium under nucleophilic butylation to give the n-butyl-substituted silyllithiums nBuRR′SiLi (15g, 15f, 15i), which were trapped with Me3SiCl. By reaction of 2g and 2i with 2,3-dimethylbuta-1,3-diene the corresponding 1,1-diarylsilacyclopentenes 17g and 17i are obtained.X-ray studies of 17g revealed a folded silacyclopentene ring with the silicon atom located 0.5 Å above the mean plane formed by the four carbon ring atoms.  相似文献   

16.
The compounds, 2,6-bis(3,5-dimethylpyrazol-1-ylmethyl)pyridine (MeNˆNˆN) (L1) and 2,6-bis(3,5-ditertbutylpyrazol-1-ylmethyl)pyridine (tBuNˆNˆN) (L2), react with either [Pd(NCMe)2Cl2] or [Pd(COD)ClMe] to form the mononuclear palladium complexes [Pd(MeNˆNˆN)Cl2] (1), [Pd(MeNˆNˆN)ClMe] (2), [Pd(tBuNˆNˆN)Cl2] (3) and [Pd(tBuNˆNˆN)ClMe] (4). Reactions of 1, 2 and 4 with the halide abstractor, NaBAr4 (Ar = 3,5-(CF3)2C6H3), led to the formation of stable tridentate cationic species [Pd(MeNˆNˆN)Cl]+(5), [Pd(MeNˆNˆN)Me]+ (6) and [Pd(tBuNˆNˆN)Cl]+ (7) respectively. The analogous carbonyl linker cationic species [Pd{(3,5-Me2pz-CO)2-py}Cl]+ (9) and [Pd{(3,5-tBu2pz-CO)2-py}Cl]+ (10), prepared by halide abstraction of the neutral complexes [Pd{(3,5-Me2pz-CO)2-py}Cl2] and [Pd{(3,5-tBu2pz-CO)2-py}Cl2] by NaBAr4, were however less stable with t1/2 of 14 and 2 days respectively. Attempts to crystallize 1 and 3 from the mother liquor resulted in the isolation of the salts [Pd(MeNˆNˆN)Cl]2[Pd2Cl6] (11) and [Pd(tBuNˆNˆN)Cl]2[Pd2Cl6] (12). Although when complexes 14 were reacted with modified methylaluminoxane (MMAO) or NaBAr4, no active catalysts for ethylene oligomerization or polymerization were formed, activation with silver triflate (AgOTf) produced active catalysts that oligomerized and polymerized phenylacetylene to a mixture of cis-transoidal and trans-cisoidal polyphenylacetylene.  相似文献   

17.
A terminally coordinated CO ligand in the complexes [Fe2{μ-CN(Me)R}(μ-CO)(CO)2(Cp)2][SO3CF3] (R = Me, 1a; R = Xyl, 1b; Xyl = 2,6-Me2C6H3), is readily displaced by primary and secondary amines (L), in the presence of Me3NO, affording the complexes [Fe2{μ-CN(Me)R}(μ-CO)(CO)(L)(Cp)2][SO3CF3] (R = Me, L = NH2Et, 4a; R = Xyl, L = NH2Et, 4b; R = Me, L = NH2Pri, 5a; R = Xyl, L = NH2Pri, 5b; R = Xyl, L = NH2C6H11, 6; R = Xyl, L = NH2Ph, 7; R = Xyl, L = NH3, 8; R = Me, L = NHMe2, 9a; R = Xyl, L = NHMe2, 9b; R = Xyl, = NH(CH2)5, 10). In the absence of Me3NO, NH2Et gives addition at the CO ligand of 1b, yielding [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){C(O)NHEt}(Cp)2] (11). Carbonyl replacement is also observed in the reaction of 1a-b with pyridine and benzophenone imine, affording [Fe2{μ-CN(Me)R}(μ-CO)(CO)(L)(Cp)2][SO3CF3] (R = Me, L = Py, 12a; R = Xyl, L = Py, 12b; R = Me, L = HNCPh2, 13a; R = Xyl, L = HNCPh2, 13b). The imino complex 13b reacts with p-tolylacetylide leading to the formation of the μ-vinylidene-diaminocarbene compound [Fe2{μ-η12- CC(Tol)C(Ph)2N(H)CN(Me)(Xyl){(μ-CO)(CO)(Cp2)] (15) which has been studied by X-ray diffraction.  相似文献   

18.
The cationic complexes [(η6-arene)Ru(N,O-amino amide)X]Y (arene = p-cymene or indane; N,O-amino amide = (l)-proline amide or (l)-phenylalanine amide; X = Cl or I; Y = Cl, I or PF6) have been synthesised and fully characterized by spectroscopic and analytical methods. In several cases (1a, 3a, 4a, 4b, 5) the metal configuration has been definitively established by X-ray analysis on single crystal. The lability of the metal center in solution has been studied by 1H NMR and CD techniques. The highest configurational stability has been found in the complexes of the type [(η6-indane)Ru(N,O-proline amide)Cl]Y (4a,b). The complexes 1b, 2a-b, 3b, 4b and 5 are good precatalysts for the transfer hydrogenation of acetophenone in basic i-PrOH, with ee up to 76% at 30 °C. An ESI(+)-MS study of pre-catalytic solutions has provided useful information on the catalytic mechanism.  相似文献   

19.
Reactions of the dinuclear complexes [(η6-arene)Ru(μ-Cl)Cl]2 (arene = C6H6, p-iPrC6H4Me) and [(η5-C5Me5)M(μ-Cl)Cl]2 (M = Rh, Ir) with 2-substituted-1,8-naphthyridine ligands, 2-(2-pyridyl)-1,8-naphthyridine (pyNp), 2-(2-thiazolyl)-1,8-naphthyridine (tzNp) and 2-(2-furyl)-1,8-naphthyridine (fuNp), lead to the formation of the mononuclear cationic complexes [(η6-C6H6)Ru(L)Cl]+ {L = pyNp (1); tzNp (2); fuNp (3)}, [(η6-p-iPrC6H4Me)Ru(L)Cl]+ {L = pyNp (4); tzNp (5); fuNp (6)}, [(η5-C5Me5)Rh(L)Cl]+ {L = pyNp (7); tzNp (8); fuNp (9)} and [(η5-C5Me5)Ir(L)Cl]+ {L = pyNp (10); tzNp (11); fuNp (12)}. All these complexes are isolated as chloro or hexafluorophosphate salts and characterized by IR, NMR, mass spectrometry and UV/Vis spectroscopy. The molecular structures of [1]Cl, [2]PF6, [4]PF6, [5]PF6 and [10]PF6 have been established by single crystal X-ray structure analysis.  相似文献   

20.
The metal β-diketiminato ligand-to-metal binding modes are briefly reviewed, with reference particularly to our previous work on metal complexes using the ligands [{N(R1)C(R2)}2CH] (R1 = SiMe3 = R and R2 = Ph; or R1 = C6H3Pri2-2,6 and R2 = Me). The syntheses of the β-diketimines H[{N(R)C(Ar)}2CH] 1 (Ar = Ph) and 2 (Ar = C6H4Me-4) and the ansa-CH2-bridged bis(β-diketimine)s 3 (Ar = Ph) and 4 (Ar = C6H4Me-4) are reported. Thus, from the appropriate compound Li[{N(R)C(Ar)}2CH] and H2O, (CH2Br)2 or CH2Br2 the product was 2, 3 or 4. Compound 1 was prepared from K[{N(R)C(Ph)}2CH] and (CH2Br)2. Each of 3 or 4 with LiBun surprisingly yielded the bicyclic dilithium compound 5 (Ar = Ph) or 6 (Ar = C6H4Me-4) in which each of the β-diketiminato fragments is an N,N′-bridge between the two lithium atoms and the CH2 moiety joins the two ligands through their central carbon atoms. However, 4 with AlMe3 yielded the expected ansa-CH2-bridged-bis[(β-diketiminato)(dimethyl)alane] 7, which was also obtained from 6 and Al(Cl)Me2. X-ray structures of the known compounds 2 and 3, and of 5, 6 and 7 are presented; the 1H NMR spectra of 6 in toluene-d8 show that there is restricted rotation about the NC-C6H4Me-4 bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号