首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new series of organo-titanium complexes have been prepared from the reaction between Ti(NMe2)4 and C2-symmetric ligands, (R,R)-11,12-bis(pyrrol-2-ylmethyleneamino)-9,10-dihydro-9,10-ethanoanthracene (1H2), and (R,R)-bis(diphenylthiophosphoramino)-9,10-dihydro-9,10-ethanoanthracene (2H2), (R,R)-11,12-bis(mesitylenesulphonylamino)-9,10-dihydro-9,10-ethanoanthracene (3H2) and (R,R)-bis(diphenylthiophosphoramino)-1,2-cyclohexane (4H2). Treatment of Ti(NMe2)4 with 1 equiv of 1H2 gives, after recrystallization from a benzene solution, the binuclear double helicate titanium amide (1)2[Ti(NMe2)2]2⋅(5) in 71% yield. While under similar reaction conditions, reaction of Ti(NMe2)4 with 1 equiv of 2H2, 3H2 or 4H2 gives, after recrystallization from a toluene or benzene solution, the mononuclear single helicate titanium amides (2)Ti(NMe2)2 (6), (3)Ti(NMe2)2 (7) and (4)Ti(NMe2)2 (8), respectively, in good yields. All new compounds have been characterized by various spectroscopic techniques, and elemental analyses. The solid-state structures of complexes 5-8 have further been confirmed by X-ray diffraction analyses. The titanium amides are active catalysts for the polymerization of rac-lactide, leading to the isotactic-rich polylactides.  相似文献   

2.
A new series of titanium(IV) and zirconium(IV) amides have been prepared from the reaction between M(NMe2)4 (M = Ti, Zr) and C2-symmetric ligands, (R)-2,2′-bis(pyridin-2-ylmethylamino)-6,6′-dimethyl-1,1′-biphenyl (2H2), (R)-2,2′-bis(pyrrol-2-ylmethyleneamino)-6,6′-dimethyl-1,1′-biphenyl (3H2), (R)-2,2′-bis(diphenylphosphinoylamino)-6,6′-dimethyl-1,1′-biphenyl (4H2), (R)-2,2′-bis(methanesulphonylamino)-6,6′-dimethyl-1,1′-biphenyl (5H2), (R)-2,2′-bis(p-toluenesulphonylamino)-6,6′-dimethyl-1,1′-biphenyl (6H2), and C1-symmetric ligands, (R)-2-(diphenylthiophosphoramino)-2′-(dimethylamino)-6,6′-dimethyl-1,1′-biphenyl (7H) and (R)-2-(pyridin-2-ylamino)-2′-(dimethylamino)-6,6′-dimethyl-1,1′-biphenyl (8H), which are derived from (R)-2,2′-diamino-6,6′-dimethyl-1,1′-biphenyl. Treatment of M(NMe2)4 with 1 equiv. of N4-ligand, 2H2 or 3H2 gives, after recrystallization from an n-hexane solution, the chiral zirconium amides (2)Zr(NMe2)2 (9), (3)Zr(NMe2)2 (11), and titanium amide (3)Ti(NMe2)2 (10), respectively, in good yields. Reaction of Zr(NMe2)4 with 1 equiv of diphenylphosphoramide 4H2 affords the chiral zirconium amide (4)Zr(NMe2)2 (12) in 85% yield. Under similar reaction conditions, treatment of Ti(NMe2)4 with 1 equiv. of sulphonylamide ligand, 5H2 or 6H2 gives, after recrystallization from a toluene solution, the chiral titanium amides (5)Ti(NMe2)2·0.5C7H8 (13·0.5C7H8) and (6)Ti(NMe2)2 (15), respectively, in good yields, while reaction of Zr(NMe2)4 with 1 equiv. of 5H2 or 6H2 gives the bis-ligated complexes, (5)2Zr (14) and (6)2Zr (16). Treatment of M(NMe2)4 with 2 equiv. of diphenylthiophosphoramide ligand 7H or N3-ligand 8H gives, after recrystallization from a benzene solution, the bis-ligated chiral zirconium amides (7)2Zr(NMe2)2 (17) and (8)2Zr(NMe2)2 (19), and bis-ligated chiral titanium amide (8)2Ti(NMe2)2 (18), respectively, in good yields. All new compounds have been characterized by various spectroscopic techniques, and elemental analyses. The solid-state structures of complexes 10, 12, 13, and 17-19 have further been confirmed by X-ray diffraction analyses. The zirconium amides are active catalysts for the asymmetric hydroamination/cyclization of aminoalkenes, affording cyclic amines in good to excellent yields with moderate ee values, while the titanium amides are not.  相似文献   

3.
Title compounds of the type 2,3,5,6-tetraphenyl-1,4-di-X-1,4-di-Y-1,4-disilacyclohexa-2,5-diene wherein X=Y=NMe2 (4); X=NMe2, Y=Cl (cis, trans-5); X=NMe2, Y=Me [(trans)-6] and X=t-Bu, Y=Cl (trans-8) were synthesized from Si2(NMe2)5Cl, sym-Si2(NMe2)4Cl2, sym-Si2(NMe2)4Me2, and sym-Si2Cl4(t-Bu)2, respectively, in the presence of diphenylacetylene at 200 °C. Similarly the analogous title compound from the combination of 1-phenyl-1-propyne and Si2(NMe2)5Cl [X=Y=NMe2 (cis and trans-7) was synthesized. In all cases where cis/trans diastereomers could arise from two different silicon substituents (5, 6, 8) the trans isomer was the sole or dominant product. Evidence for the intermediacy of the silylene Si(NMe2)2 in these reactions was gained from a trapping experiment. Compound 4 upon treatment with SiCl4, SiBr4 or PI3 provided the corresponding 1,1,4,4-tetrahalo derivatives 9a-c, respectively. Treatment of 4 with MeOH or PhOH gave the 1,1,4,4-tetramethoxy and tetraphenoxy analogues 9d and 9e, respectively. The tetrachloro derivative 9a upon LAH reduction led to the corresponding tetrahydro compound 10, while the reaction of 9a with H2O gave the tetrahydroxy derivative 11. Allowing (trans)-6 to react with SiCl4 provided a ca. 1:1 cis/trans ratio of the derivative 12 in which X=Cl, Y=Me, and possible pathways that rationalize this loss of stereochemistry are proposed. Synthesis of trans-13 in which X=t-Bu, Y=H was achieved by LAH reduction of 8. All of the title compounds except 8 experience free phenyl rotation at room temperature. At −30 °C this rotation in 8 is essentially halted. The molecular structures of 4, 8, 9c, 9e, 10 and 13 were determined by X-ray crystallography.  相似文献   

4.
The half-sandwich complex [Ti{(η5-C5H4)B(NiPr2)N(H)iPr}(NMe2)3] (6) was prepared from (η1-C5H5)B(NiPr2)N(H)iPr (5) and [Ti(NMe2)4] with cleavage of one equivalent of HNMe2 and further converted into the corresponding constrained geometry complex [Ti{(η5-C5H4)B(NiPr2)NiPr}(NMe2)2] (7) by elimination of a second equivalent of HNMe2. Reaction of the half-sandwich complexes [Ti{(η5-C5H4)B(NiPr2)N(H)R}(NMe2)3] (R = iPr, tBu) with excess Me3SiCl yielded the corresponding dichloro complexes [Ti{(η5-C5H4)B(NiPr2)N(H)R}Cl2(NMe2)] (R = tBu (10), iPr (11)). The intermediate species [Ti{(η5-C5H4)B(NiPr2)N(H)iPr}Cl(NMe2)2] (9) could also be spectroscopically characterised. Partial hydrolysis of 10 and 11, respectively, resulted in formation of [{TiCl2(μ-{OB(NHMe2)-η5-C5H4})}2-μ-O] (12). The molecular structures of 10 and 12 have been determined by X-ray crystallographic analyses. Complex 10, when activated with MAO, was found to be a highly active styrene polymerisation catalyst while being inactive towards the polymerisation of ethylene.  相似文献   

5.
The syntheses of group 4 metal complexes containing the picolyldicarbollyl ligand DcabPyH [nido-7-HNC5H4(CH2)-8-R-7,8-C2B9H10] (2) are reported. New types of constrained geometry group 4 metal complexes (DcabPy)MCl2, [{(η5-RC2B9H9)(CH2)(η1-NC5H4)}MCl2] (M = Ti, 3; Zr, 4; R = H, a; Me, b), were prepared by the reaction of 2 with M(NMe2)2Cl2 (M = Ti, Zr). The reaction of 2 with M(NMe2)4 in toluene afforded (DcabPy)M(NMe2)2, [{(η5-RC2B9H9)(CH2)(η1-NC5H4)}M(NMe2)2] (M = Ti, 5; Zr, 6; R = H, a; Me, b), which readily reacted with Me3SiCl to yield the corresponding chloride complexes (DcabPy)MCl2 (M = Ti, 3; Zr, 4; R = H, a; Me, b). The structures of the diamido complexes (DcabPy)M(NMe2)2 (M = Ti, 5; Zr, 6) were established by X-ray diffraction studies of 5a, 5b, and 6a, which verified an η51-bonding mode derived from the dicarbollylamino ligand. Related constrained geometry catalyst CGC-type alkoxy titanium complexes, (DcabPy)Ti(OiPr)2 (7), were synthesized by the reaction of 2 with Ti(OiPr)4. Sterically less demanding phenols such as 2-Me-C6H4OH replaced the coordinated amido ligands on (DcabPy)Ti(NMe2)2 (5a) to yield aryloxy stabilized CGC complexes (DcabPy)Ti(OPhMe)2(PhMe  =  2- Me-C6H4, 8). NMR spectral data suggested that an intramolecular Ti-N coordination was intact in solution, resulting in a stable piano-stool structure with two aryloxy ligands residing in two of the leg positions. The aryloxy coordinations were further confirmed by single crystal X-ray diffraction studies on complexes (DcabPy)Ti(OPhMe)2 (8).  相似文献   

6.
A series of potentially bidentate benzimidazolyl ligands of the type (Bim)CH2D (where Bim = benzimidazolyl and D = NMe2L1, NEt2L2, NPri2L3, OMe L4 and SMe L5) has been reacted with Ti(NMe2)4 to give five- and six-coordinate Ti(IV) complexes of the type [(Bim)CH2D]Ti(NMe2)3 and [(Bim)CH2D]2Ti(NMe2)2, respectively. The X-ray structures of [(Bim)CH2OMe]Ti(NMe2)3, [(Bim)CH2NMe2]2Ti(NMe2)2 and [(Bim)CH2OMe)]2Ti(NMe2)2 are reported along with an evaluation of their behavior in ethylene polymerization.  相似文献   

7.
The reaction of N-(N′-methyl-2-pyrrolylmethylidene)-2-thienylmethylamine (1) with Fe2(CO)9 in refluxing toluene gives endo cyclometallated iron carbonyl complexes 2 and 5, exo cyclometallated iron carbonyl complex 3, and unexpected iron carbonyl complex 4. Complexes 2, 3, and 5 are geometric isomers. Complex 5 differs from complex 2 in the switch of the original substituent from α to β position of the pyrrolyl ring, and the pyrrolyl ring bridges to the diiron centers in μ-(3,2-η12) coordination mode in stead of μ-(2,3-η12). In complex 4, the pyrrolyl moiety of the original ligand 1 has been displaced by a thienyl group, which comes from the same ligand. Single crystals of 2, 3, and 5 were subjected to the X-ray diffraction analysis. The major product 2 undergoes: (i) thermolysis to recover the original ligand 1; (ii) reduction to form a hydrogenation product, 6, of the original ligand; (iii) substitution to form a monophosphine-substituted complex 7; (iv) chemical as well as electrochemical oxidation to produce a carbonylation product, γ-butyrolactam 8.  相似文献   

8.
Chloride ligand substitution reactions of tert-butyl- and arylimido-titanium complexes supported by the pendant arm functionalised N-trimethylsilyl benzamidinate ligand Me3SiNC(Ph)NCH2CH2CH2NMe2 are described. Reaction of previously-described [Ti(NtBu){Me3SiNC(Ph)NCH2CH2CH2NMe2}Cl] (1) with PhLi afforded thermally sensitive [Ti(NtBu){Me3SiNC(Ph)NCH2CH2CH2NMe2}Ph] (2). The corresponding reaction of 1 with MeLi afforded [Ti(NtBu){Me3SiNC(Ph)NCH2CH2CH2NMe2}Me] (3) detected by 1H-NMR spectroscopy but this compound could not be isolated. Reaction of 1 with LiCH2SiMe3 gave a complex mixture, but with LiN(SiMe3)2 and LiO-2,6-C6H3Me2 the compounds [Ti(NtBu){Me3SiNC(Ph)NCH2CH2CH2NMe2}X] (X=N(SiMe3)2 (4) or O-2,6-C6H3Me2 (5)) were isolated. The X-ray structure of 5 was determined. Reaction of the homologous compound [Ti(NtBu){Me3SiNC(Ph)NCH2CH2NMe2}Cl] (6) (containing a 2-carbon atom chain in the pendant arm) with MeLi or PhLi were unsuccessful although the aryloxide compound [Ti(NtBu){Me3SiNC(Ph)NCH2CH2NMe2}(O-2,6-C6H3Me2)] (7) could be isolated from the reaction of 6 with LiO-2,6-C6H3Me2. Reaction of the 3-carbon pendant arm arylimido compound [Ti(N-2,6-C6H3Me2){Me3SiNC(Ph)NCH2CH2CH2NMe2}Cl] (8) with MeLi afforded thermally sensitive [Ti(N-2,6-C6H3Me2){Me3SiNC(Ph)NCH2CH2CH2NMe2}Me] (9), and although the analogous phenyl homologue was elusive, the aryloxide derivative [Ti(N-2,6-C6H3Me2){Me3SiNC(Ph)NCH2CH2CH2NMe2}(O-2,6-C6H3Me2)] (10) was successfully isolated and structurally characterised. Comparison of the X-ray structures of 5 and 10 show unexpectedly large differences between the TiNR and TiOAr bond lengths in the two compounds.  相似文献   

9.
Amination of 1-bromo-2-methylpyridine with trans-1,2-diaminocyclohexane gives the corresponding bis(aminopyridine) H2L1. Conversion of the same diamine to the N,N′-bis(amino-4,4-dimethylthiazoline) H2L2 is also completed in three steps. The analogous aminooxazoline is however inaccessible, although the aminocyclohexane analogue is prepared readily. The proligand H2L1 forms bis(aminopyridinato) alkyl complexes of the type [ZrL1R2] (R = CH2Ph, CH2But). The molecular structure of the neopentyl complex shows that the chiral backbone leads to a puckering of the N4Zr coordination sphere, which contrasts with the related cyclohexyl-bridged Schiff-base complexes which are essentially planar. [ZrL2(CH2But)2] - the first aminothiazolinato complex - is formed similarly. A comparison of the structures of [ZrL1(CH2But)2] and [ZrL2(CH2But)2] indicates that the latter has a fully delocalised N-C-N system, rather similar to a bis(amidinate). Reaction of H2L2 with [Ti(NMe2)4] gives [TiL2(NMe2)2] which appears to be C2-symmetric like the above complexes according to NMR spectra, but has one uncoordinated thiazoline unit in the solid state. This is a result of increased ring strain at the smaller titanium metal centre.  相似文献   

10.
A series of reactivity studies of the carboamination pre-catalyst [Ti(NMe2)3(NHMe2)][B(C6F5)4] as well as the preparation of other catalysts are reported in this work. Treatment of [Ti(NMe2)3(NHMe2)][B(C6F5)4] with the aldimines Ar′NCHtol (Ar′ = 2,6-Me2C6H3, tol = 4-MeC6H4), and depending on the reaction conditions, results in isolation of [Me2NCHR′][B(C6F5)4] (1) or (Me2N)2CHtol, as well as the asymmetric titanium dimer [(Me2N)2(HNMe2)Ti(μ2-N[2,6-Me2C6H3])2Ti(NHMe2)(NMe2)][B(C6F5)4] (2). Protonation of CpTi(NMe2)3 and CpTi(NMe2)3 results in isolation of the salts, [CpTi(NMe2)2(NHMe2)][B(C6F5)4] (3) and [CpTi(NMe2)2(NHMe2)][B(C6F5)4] (4), respectively. Treatment of compounds 3 or 4 with H2N[2,6-iPr2C6H3] results in formation of the imido salts [CpTi(N[2,6-iPr2C6H3])(NHMe2)2][B(C6F5)4] (5) (58% yield) or [CpTi(N[2,6-iPr2C6H3])(NHMe2)2][B(C6F5)4] (6). When Ti(NMe2)4 is treated with [Et3Si][B(C6F5)4], the salt [Ti(NMe2)3(N[SiEt3]Me2)][B(C6F5)4] (7) is obtained, and treatment of the latter with [2,6-iPr2C6H3]NCHtol produces the imine adduct [Ti(NMe2)31-[2,6-iPr2C6H3]NCHtol)][B(C6F5)4] (8). The carboamination catalytic activity of complexes 2-7 was investigated and compared to [Ti(NMe2)3(NHMe2)][B(C6F5)4]. Likewise, a proposed mechanism to the active carboamination catalyst stemming from [Ti(NMe2)3(NHMe2)][B(C6F5)4] is described.  相似文献   

11.
Bis(dichlorosilyl)methanes 1 undergo the two kind reactions of a double hydrosilylation and a dehydrogenative double silylation with alkynes 2 such as acetylene and activated phenyl-substituted acetylenes in the presence of Speier’s catalyst to give 1,1,3,3-tetrachloro-1,3-disilacyclopentanes 3 and 1,1,3,3-tetrachloro-1,3-disilacyclopent-4-enes 4 as cyclic products, respectively, depending upon the molecular structures of both bis(dichlorosilyl)methanes (1) and alkynes (2). Simple bis(dichlorosilyl)methane (1a) reacted with alkynes [R1-CC-R2: R1 = H, R2 = H (2a), Ph (2b); R1 = R2 = Ph (2c)] at 80 °C to afford 1,1,3,3-tetrachloro-1,3-disilacyclopentanes 3 as the double hydrosilylation products in fair to good yields (33-84%). Among these reactions, the reaction with 2c gave a trans-4,5-diphenyl-1,1,3,3-tetrachloro-1,3-disilacyclopentane 3ac in the highest yield (84%). When a variety of bis(dichlorosilyl)(silyl)methanes [(MenCl3 − nSi)CH(SiHCl2)2: n = 0 (1b), 1 (1c), 2 (1d), 3 (1e)] were applied in the reaction with alkyne (2c) under the same reaction conditions. The double hydrosilylation products, 2-silyl-1,1,3,3-tetrachloro-1,3-disilacyclopentanes (3), were obtained in fair to excellent yields (38-98%). The yields of compound 3 deceased as follows: n = 1 > 2 > 3 > 0. The reaction of alkynes (2a-c) with 1c under the same conditions gave one of two type products of 1,1,3,3-tetrachloro-1,3-disilacyclopentanes 3 and 1,1,3,3-tetrachloro-1,3-disilacyclopent-4-enes (4): simple alkyne 2a and terminal 2b gave the latter products 4ca and 4cb in 91% and 57% yields, respectively, while internal alkyne 2c afforded the former cyclic products 3cc with trans form between two phenyl groups at the 3- and 4-carbon atoms in 98% yield, respectively. Among platinum compounds such as Speier’s catalyst, PtCl2(PEt3)2, Pt(PPh3)2(C2H4), Pt(PPh3)4, Pt[ViMeSiO]4, and Pt/C, Speier’s catalyst was the best catalyst for such silylation reactions.  相似文献   

12.
Novel half-sandwich [C9H5(SiMe3)2]ZrCl3 (3) and sandwich [C9H5(SiMe3)2](C5Me4R)ZrCl2 (R = CH3 (1), CH2CH2NMe2 (2)) complexes were prepared and characterized. The reduction of 2 by Mg in THF lead to (η5-C9H5(SiMe3)2)[η52(C,N)-C5Me4CH2CH2N(Me)CH2]ZrH (7). The structure of 7 was proved by NMR spectroscopy data. Hydrolysis of 2 resulted in the binuclear complex ([C5Me4CH2CH2NMe2]ZrCl2)2O (6). The crystal structures of 1 and 6 were established by X-ray diffraction analysis.  相似文献   

13.
A series of aluminum alkoxide and bis-alkoxides compounds were synthesized and characterized. Reacting 1 with 1 and 2 equiv. of t-butanol in methylene chloride generates [C4H3N(CH2NMe2)-2]2Al(O-t-Bu) (2) and [C4H3N(CH2NMe2)-2-H-C4H3N(CH2NMe2)-2]Al(O-t-Bu)2 (3) in 47% and 54% yield, respectively. The 1H NMR spectrum of 2 exhibits two singlets for NMe2 and CH2N at δ 2.52 and 3.84, respectively, representing the symmetrical manner of molecular structure 2 in a solution. Compound 3 is not thermal stable in solution which decompose into substituted pyrrole ligand C4H4N(CH2NMe2)-2 and unknown aluminum alkoxides. Reacting 1 with 2 equiv. of triphenylsilanol in methylene chloride generates a tetra-coordinated aluminum “ate” compound [C4H3N(CH2NMe2)-2-H- C4H3N(CH2NMe2)-2]Al(OSiPh3)2 (4) in 49% yield. The 1H NMR spectra of 4 at room temperature show a broad signal at δ 1.57 for NMe2 fragments and the signals for CH2N were not observed. VT 1H NMR spectra of 4 show the NMe2 fragments became two singlets (δ 1.27 and 2.12) and the CH2N exhibited two doublets (δ 2.44 and 3.56) at 240 K. The fluxional energy barrier (ΔG) is estimated at ca. 50 kJ/mol. The molecular structures of compounds 3 and 4 are determined by single-crystal X-ray diffractometer.  相似文献   

14.
Reaction of bis(amide) sodium Na2[(1R,2R)-(−)-1,2-(NSiMe3)2-C6H10] (Na2[L1]) with Ti(OiPr)2Cl2 in different conditions gave mixed-ligand complexes [Ti(OiPr)Cl][L1] (1) or [Ti(OiPr)2Cl]2[L1] (2); 2 is a dinuclear titanium example in which Ti atoms are bridged by nitrogen and oxygen atoms simultaneously forming a distorted rhombic core. Reaction of the amine-amidinate ligand (1R,2R)-(−)-1-Li[NC(Ph)N(SiMe3)]-2-(NHSiMe3)-C6H10(Li[L2]) or rarely linked bis(amidinate) ligand Li2[(1R,2R)-(−)-1,2-{NC(Ph)N(SiMe3)}2-C6H10](Li2[L3]) with ZrCl4 yielded the unbridged and bridged bis(amidinate) complexes ZrCl2[L2]2 (3) and [ZrCl2(THF)][L3] (4), respectively; Moreover, the reaction of (1R,2R)-(−)-1-Li[NC(Ph)N(SiMe3)]-2-Li(NSiMe3)C6H10(Li2[L2]) with Ti(OiPr)2Cl2 gave a new type of tridentate amido-amidinate product [Ti(OiPr)2][L2] (6), which is a distinct model compared to [Ti(OiPr)2Cl][L2] (5) yielded from Li[L2]. All the products have been characterized by X-ray crystallography and the structural studies are presented detailedly comparing with relevant compounds.  相似文献   

15.
The reactions of Mo2(O2CCH3)4 with different equivalents of N,N′-bis(pyrimidine-2-yl)formamidine (HL1) and N-(2-pyrimidinyl)formamide (HL2) afforded dimolybdenum complexes of the types Mo2(O2CCH3)(L1)2(L2) (1) trans-Mo2(L1)2(L2)2 (2) cis-Mo2(L1)2(L2)2 (3) and Mo2(L2)4 (4). Their UV–Vis and NMR spectra have been recorded and their structures determined by X-ray crystallography. Complexes 2 and 3 establish the first pair of trans and cis forms of dimolybdenum complexes containing formamidinate ligands. The L1 ligands in 13 are bridged to the metal centers through two central amine nitrogen atoms, while the L2 ligands in 14 are bridged to the metal centers via one pyrimidyl nitrogen atom and the amine nitrogen atom. The Mo–Mo distances of complexes 1 [2.0951(17) Å], 2 [2.103(1) Å] and 3 [2.1017(3) Å], which contain both Mo?N and Mo?O axial interactions, are slightly longer than those of complex 4 [2.0826(12)–2.0866(10) Å] which has only Mo?O interactions.  相似文献   

16.
The reactions of ligands 4-C6H5C6H4CHNCH2CH2NMe2 (1a) and 2-C6H5C6H4CHNCH2CH2NMe2 (1b) in front of cis-[PtCl2(dmso)2] or cis-[PtPh2(SMe2)2] produced compounds [PtCl2{4-C6H5C6H4CHNCH2CH2NMe2}] (2aCl) and [PtCl2{2-C6H5C6H4CHNCH2CH2NMe2}] (2bCl) or [PtPh2{4-C6H5C6H4CHNCH2CH2NMe2}] (2aPh) and [PtPh2{2-C6H5C6H4CHNCH2CH2NMe2}] (2bPh). From all these compounds, the corresponding cyclometallated [C,N,N′] platinum(II) compounds 3aCl, 3bCl, 3aPh and 3bPh were obtained although under milder conditions and with higher yields for the phenyl derivatives. The reaction of compounds 3aPh and 3bPh with methyl iodide gave cyclometallated [C,N,N′] platinum(IV) compounds 4aPh and 4bPh of formula [PtMePhI{C6H5C6H3CHNCH2CH2NMe2}]. Compounds 3aCl and 3bCl containing a chloro ligand, although unreactive towards methyl iodide, undergo oxidative addition of chlorine to produce the corresponding platinum(IV) compounds [PtCl3{4-C6H5C6H3CHNCH2CH2NMe2}] (6aCl and 6bCl). All compounds were characterised by NMR spectroscopy and crystal structures of compounds 3bCl and 6bCl are also reported.  相似文献   

17.
A series of zirconium and hafnium alkoxide and amide complexes containing symmetrical tridentate pyrrolyl ligand, [C4H2NH(2,5-CH2NMe2)2] have been synthesized conveniently by treatment of 2,6-di-tert-butylphenol, tert-butanol or pyrrole in pentane and their reactivity over ring opening polymerization of ε-caprolactone have been carried out. Reactions of [C4H2NH(2,5-CH2NMe2)2] with M(NEt2)4 (M = Zr or Hf) originate [C4H2N(2,5-CH2NMe2)2]M(NEt2)3 (1, M = Zr; 2, M = Hf). Furthermore, reactions of [C4H2N(2,5-CH2NMe2)2]M(NEt2)3 with 2,6-di-tert-butylphenol, tert-butanol or pyrrole afford [C4H2N(2,5-CH2NMe2)2]M(OC6H3-2,6-tBu2)(NEt2)2 (3, M = Zr; 4, M = Hf), [C4H2N(2,5-CH2NMe2)2]M(OtBu)3 (5, M = Zr; 6, M = Hf) and [C4H2N(2,5-CH2NMe2)2]M(C4H4N)3 (7, M = Zr; 8, M = Hf), respectively, in satisfactory yield. All the complexes have been characterized by NMR spectra as well 3, 4 and 6 subjected to the X-ray diffraction analysis. Complexes 3-8 have been used as initiators for the ring-opening polymerization of ε-caprolactone and observed broad PDI values (1.84-2.75) representing multiple reactivity centers of these complexes.  相似文献   

18.
A series of aluminum compounds containing tridentate pyrrolyl ligands were obtained from related aluminum dihydride compounds via protonolysis. Treatment of tetranuclear aluminum compound [C4H2N{2,5-(CH2NMe2)2}Al2H5]2 (1) with two equivalents of [C4H3N{2,5-(CH2NMe2)2}] in methylene chloride at 0 °C led to the formation of [C4H2N{2,5-(CH2NMe2)2}]AlH2 (2). Similarly, when the deuterated aluminum compound 1D was used, the corresponding aluminum compound [C4H2N{2,5-(CH2NMe2)2}]AlD2 (2D) could be isolated. The reaction of 2 with one or two equivalents of phenylethyne, triphenylmethanethiol, 2,6-diisopropylaniline, or triphenylsilanol generated mononuclear aluminum compounds [[C4H2N{2,5-(CH2NMe2)2}]AlRR′ (3, R = -CCPh, R′ = H; 4, R = R′ = -CCPh; 5, R = -SCPh3, R′ = H; 6, R = R′ = -SCPh3; 7, R = -NH(2,6-iPr2Ph), R′ = H; 8, R = R′ = -NH(2,6-iPr2Ph); 9, R = -OSiPh3, R′ = H; 10, R = R′ = -OSiPh3). Related Al-D compounds of 3, 5, 7 and 9 were also synthesized and corresponding IR spectroscopic data well matched in comparison of the stretching frequencies of Al-H and Al-D. The molecular structures of 2D, 4, 5, 5D, 7, and 10 have been determined by X-ray crystallography. Compounds 2, 5, and 7 initiated the ring-opening polymerization of ?-caprolactone and produced high-molecular weight of poly-?-caprolactone.  相似文献   

19.
Reactions of [Ru(PPh3)3Cl2] with ROCS2K in THF at room temperature and at reflux gave the kinetic products trans-[Ru(PPh3)2(S2COR)2] (R = nPr 1, iPr 2) and the thermodynamic products cis-[Ru(PPh3)2(S2COR)2] (R = nPr 3, iPr 4), respectively. Treatment of [RuHCl(CO)(PPh3)3] with ROCS2K in THF afforded [RuH(CO)-(S2COR)(PPh3)2] (R = nPr 5, iPr 6) as the sole isolable products. Reaction of [RuCl2(PPh3)3] with tetramethylthiuram disulfide [Me2NCS2]2 gave a Ru(III) dithiocarbamate complex, [Ru(PPh3)2(S2CNMe2)Cl2] (7). This reaction involved oxidation of ruthenium(II) to ruthenium(III) by the disulfide group in [Me2NCS2]2. Treatment of 7 with 1 equiv. of [M(MeCN)4][ClO4] (M = Cu, Ag) gave the stable cationic ruthenium(III)-alkyl complexes [Ru{C(NMe2)QC(NMe2)S}(S2CNMe2)(PPh3)2][ClO4] (Q = O 8, S 9) with ruthenium-carbon bonds. The crystal structures of complexes 1, 2, 4·CH2Cl2, 6, 7·2CH2Cl2, 8, and 9·2CH2Cl2 have been determined by single-crystal X-ray diffraction. The ruthenium atom in each of the above complexes adopts a pseudo-octahedral geometry in an electron-rich sulfur coordination environment. The 1,1′-dithiolate ligands bind to ruthenium with bite S-Ru-S angles in the range of 70.14(4)-71.62(4)°. In 4·CH2Cl2, the P-Ru-P angle for the mutually cis PPh3 ligands is 103.13(3)°, the P-Ru-P angles for other complexes with mutually trans PPh3 ligands are in the range of 169.41(4)-180.00(6)°. The alkylcarbamate [C(NMe2)QC(NMe2)S] (Q = O, S) ligands in 8 and 9 are planar and bind to the ruthenium centers via the sulfur and carbon atoms from the CS and NC double bonds, respectively. The Ru-C bond lengths are 1.975(5) and 2.018(3) Å for 8 and 9·2CH2Cl2, respectively, which are typical for ruthenium(III)-alkyl complexes. Spectroscopic properties along with electrochemistry of all complexes are also reported in the paper.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号