首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-resolution Fourier transform infrared spectrum of H2S was recorded and analyzed in the region of the polyad. More than 450 transitions were assigned to the 3ν1 + ν2 and 2ν1 + ν2 + ν3 bands with the maximum values of quantum numbers J and Ka equal to 14, 7, and 14, 9 for these two bands, respectively. The theoretical analysis was fulfilled with the Hamiltonian which takes into account strong resonance interactions among the studied vibrational states (3 1 0), (2 1 1), and also “dark” states (0 3 2) and (2 3 0). The rms deviation is 0.0019 cm−1. The intensity borrowing effect in the doublets in the P-branch transitions of the 3ν1 + ν2 and 2ν1 + ν2 + ν3 bands is observed and discussed.  相似文献   

2.
High-resolution Fourier transform infrared spectrum of H2S was recorded and analyzed in the region of the v=v1+v2/2+v3=3 poliad. Experimental transitions were assigned to the 3ν1, 2ν1+ν3, ν1+2ν3, 3ν3, 2ν1+2ν2, and ν1+2ν2+ν3 bands with the maximum value of quantum number J equal to 11, 14, 10, 11, 8, and 11, respectively. The theoretical analysis was fulfilled with the Hamiltonian model which takes into account numerous resonance interactions between all the mentioned vibrational states. The rms deviation of the reproduction of 510 upper energy levels (derived from more than 1550 transitions) with 75 parameters was 0.0022 cm−1.  相似文献   

3.
The absorption bands ν1+ν2, ν2+ν3, and ν2+ν6 of PH2D have been recorded for the first time using a high-resolution Bruker 120 HR interferometer, and rotationally analyzed. Some transitions belonging to the very weak band ν2+ν5 and enhanced in intensity by strong interactions with the ν1+ν2 band were also assigned. Sets of parameters obtained from the fit reproduce experimental line position of the bands ν1+ν2 and ν2+ν3 with about the experimental accuracy. The residuals of the ro-vibrational energies of the ν2+ν6 band are about 10 times larger. Reasons for the poorer reproduction of the latter data are given.  相似文献   

4.
High-resolution Fourier-transform spectra of the D2S molecule in the regions of polyads of interacting vibrational states v = 3/2, 2, 5/2, 3 and 7/2 (v = v1 + v2/2 + v3) were recorded for the first time with a Bruker IFS 120 Fourier-transform interferometer and analysed. A global fit of all currently available rotation-vibration energies has been made for 22 vibrational states of the D2S molecule. The resulting set of 231 parameters reproduces all the initial experimental data (about 3670 vibration-rotation energies which correspond to more than 9700 ro-vibrational transitions with Jmax = 25) with accuracies close to the experimental uncertainties.  相似文献   

5.
The Fourier-transform absorption spectrum of H218O was recorded in the 6000-7940 cm−1 region and assigned on the base of the very accurate ab initio calculations by Partridge and Schwenke (PS) [J. Chem. Phys. 106 (1997) 4618-4639; J. Chem. Phys. 113 (2000) 6592-6597]. A set of 821 accurate rovibrational energy levels was obtained for six interacting states of the first hexad: (101), (120), (021), (200), (002), and (040). 290 of them are reported for the first time. The experimental line intensities are also estimated and compared with the PS calculations and the available literature data in the considered spectral range.  相似文献   

6.
The infrared spectrum of the PD3 molecule has been measured in the region of the first stretching overtone bands on a Fourier transform spectrometer with a resolution of 0.0068 cm−1 and analyzed for the first time. More than 800 transitions with Jmax=15 have been assigned to the bands 2ν1 and ν1+ν3. An effective Hamiltonian was used which takes into account both the presence of resonance interactions between the states (2 0 0 0) and (1 0 1 0), and interactions of these with the third stretching vibrational state of the v=2 polyad, (0 0 2 0). A set of 44 spectroscopic parameters is obtained from the fit. This reproduces the 305 initial “experimental” upper rovibrational energies with an rms=0.0015 cm−1.  相似文献   

7.
A high-resolution Fourier transform spectrum of the D2MSe species (M = 82, 80, 78, 77, and 76) in the region 2300-2500 cm−1 was recorded for the first time and assigned. On the basis of these experimental data, rotation-vibration energies of the (1 1 0) and (0 1 1) vibrational states were fitted, and band centers, and rotational, centrifugal distortion, and resonance interaction parameters were determined for the main D280Se species. The obtained set of 32 fitted parameters reproduces the 647 rotation-vibration energies with a rms deviation of 0.00024 cm−1. The ν1 + ν2 and ν2 + ν3 bands of the other four isotopic species are analyzed as well.  相似文献   

8.
Fourier transform spectra of water vapor enriched in 18O and 17O were recorded between 8012 and 9336 cm−1 and analyzed for the first time. High accuracy ab initio predictions of line positions and intensities by Partridge and Schwenke [J. Chem. Phys. 106 (1997) 4618-4639; 113 (2000) 6592-6597] were used in the process of spectrum assignment. Transitions involving the (031), (111), (130), (210), and (012) upper vibrational states were identified in the recorded spectra. As a result, 514 and 244 precise ro-vibrational energy levels were derived for the H218O and H217O molecules, respectively. High-order resonance perturbations between levels of the vibrational states involved were evidenced leading to the identification of a number of rotational levels of the (050) and (060) highly excited bending states.  相似文献   

9.
The high resolution spectrum of a phosphine gas mixture containing PHD2 was recorded at room temperature in the 12 550-12 770 cm−1 region. A high sensitivity laser photoacoustic spectrometer consisting of a longitudinal resonant cell coupled to a Ti:sapphire ring laser was employed. More than 600 transitions were assigned to the 6ν1 overtone band of PHD2 up to Jmax=20, Kamax=6. A Hamiltonian model developed up to the octic centrifugal distortion terms was used. Seven rotational and centrifugal distortion parameters were fitted, the other ones being fixed to their values linearly extrapolated from ν1 and 2ν1. The derived parameters reproduce the initial data within the experimental uncertainties. The isolated character of the P-H bond is confirmed.  相似文献   

10.
High-resolution Fourier transform spectrum of the HD32S molecule was studied in the region of 5000-9000 cm−1. More than 1600 observed transitions yielded 239, 264, 131, and 116 upper state ro-vibrational energies of the states (002), (012), (003), and (013), respectively. With a Watson-type effective Hamiltonian model, the ro-vibrational parameters of these four upper states were determined by a least-square fitting which can reproduce the ro-vibrational energies close to the experimental accuracy. The relative linestrengths are also discussed.  相似文献   

11.
The HDO absorption FT spectrum is recorded and analyzed in the 7500-8200 cm−1 spectral region. The high accuracy ab initio calculation of Schwenke and Partridge was successfully applied for spectrum assignment that resulted in derivation of 508 precise rovibrational energy levels for the (3 0 0), (0 3 1), (1 1 1), (0 6 0), (2 2 0), and (0 0 2) states, with 295 of them being reported for the first time. In particular, eight new energy levels, including the band center at 7914.3170 cm−1, were derived for the highly excited bending (0 6 0) state from transitions borrowing their intensities through local high-order resonance coupling with the (3 0 0) and (0 3 1) states.  相似文献   

12.
An optical fiber gas sensor using hollow-core photonic bandgap fiber as a gas cell is proposed to detect H2S mixed with natural gas. This sensor is advantageous for eliminating instability of light source, impact of thermal zero drift, and zero shift of photoelectric device. The gas sensing probe of configuration is using two shorter pieces of hollow-core photonic bandgap fiber (HC-PBF) with the same overall length instead of one long piece of HC-PBF to improve the system response. The experimental dates indicate that a minimum detectivity of 10 ppm for the system configuration was estimated.  相似文献   

13.
The infrared spectral regions of the P-D stretching fundamental band ν2 and the first overtone band 2ν2 of PH2D were recorded with a resolution of 2.7×10−3 and , respectively. In the analysis about 710 and 440 transitions were assigned to the ν2 and 2ν2 bands. These provided 358 and 268 upper rovibrational energy terms, respectively. Resonance interactions between the states (010000) and (000200) were taken into account in the Hamiltonian used to fit upper energies of the (010000) state. The rovibrational energies of the (020000) state were fitted with a Hamiltonian for an isolated vibrational state.  相似文献   

14.
The purpose of this work is to study the adsorption of H2S from gas streams containing He and CH4 with an emphasis on the influence of the sorbent morphology on the process of adsorption. As an example of the approach, a unique modified nano-ZnO sample with a Rod-like morphology was fabricated and comparatively studied together with a nano-spherical ZnO sample under various conditions. The objective was accomplished applying central composite design (CCD) in order to screen the effects of significant adsorption parameters obtained by Placket-Burman design. Morphology of the sorbent, temperature, space velocity and H2S feed concentration were initially evaluated. Placket-Burman design experiments showed a wide deviation of adsorption capacity of 0.03-0.24 g H2S/g ZnO. Results indicated that comparing other parameters Rod like morphology comparing spherical, had significant effect on all four independent H2S adsorption parameters. Besides that, space velocity and H2S feed concentration were found to be effective parameters on adsorption of hydrogen sulfide in the range of 4000-8000 h−1 and 0.5-1 mol% respectively. Moreover, experiments revealed a negligible effect of adsorption temperature in range of 150-250 °C. The optimized condition obtained a dynamic capacity of 0.2401 g H2S/g ZnO at space velocity 4000 h−1 and H2S feed concentration of 1 mol%. Proceeding our study by significant parameters, analysis of variance (ANOVA) displayed a high coefficient of determination (R2) value of 0.931-0.959, indicating the satisfactory adjustment of the quadratic model.  相似文献   

15.
One series of Cu-Zn and two series of Cu-Zn-Al hydroxycarbonate precursors with varying metal molar ratios were prepared via co-precipitation or multi-precipitation method, and the mixed metal oxides obtained by calcination of the precursor materials were used as adsorbents for H2S removal in the range of 25-100 °C. The results of H2S adsorption tests showed that these mixed oxides, especially two series of Cu-Zn-Al mixed metal oxides exhibited markedly high breakthrough sulfur capacities (ranging from 4.4 to 25.7 g S/100 g-sorbent with increase of Cu/Zn molar ratio) at 40 °C. Incorporation Cu and/or Al decreased the mean crystalline sizes of ZnO and CuO species in the Cu-Zn and Cu-Zn-Al mixed metal oxide adsorbents by decreasing of mean crystalline sizes of hydroxycarbanate phases mainly including hydrozincite, aurichalcite and malachite, segregation of Al phase, etc. Higher breakthrough sulfur capacity of each adsorbent in two ternary series than that of the corresponding adsorbent in binary series should be ascribed to the enhancement of the dispersion of ZnO and/or CuO species with incorporation of aluminum, thereby increasing the overall rate of reaction between the adsorbent and H2S by reducing the thickness of potential sulfide shell on the outer layer of the oxide crystalline grains and increasing the area of the interface for the exchange of HS/S2− and O2−. For each series of adsorbents, the breakthrough sulfur capacity increased with the increase of Cu/Zn molar ratio regardless of changes of the dispersion of CuO and/or ZnO. This phenomenon might be mainly attributed to faster rate of the lattice diffusion of HS, S2− and O2− or exchange of HS/S2− and O2− during the sulfidation of CuO than that during the sulfidation of ZnO due to less rearrangement of the anion lattice.  相似文献   

16.
Pt-doped mesoporous indium oxide (In2O3) has been successfully obtained by a simple and effective in situ nanocasting method. The resultant samples were characterized by XRD, FE-SEM, TEM, N2 physisorption, XPS and EDX. The gas sensing properties for hydrogen sulfide (H2S) of the Pt-doped mesoporous In2O3 specimens were also examined. The results exhibit those In2O3 specimens possess much higher response to H2S even at low concentration of 2 ppm and a lower optimum working temperature of 150 °C. A possible mechanism was also provided to explain the improvement of the sensing properties.  相似文献   

17.
The P-H stretching bands ν1/ν5 and 2ν1/ν1+ν5 were recorded using a Bruker 120 HR interferometer with a resolution of 0.0042 and 0.0088 cm−1, respectively, and analyzed. From the fits 33 and 50, respectively, vibrational, rotational, centrifugal distortion, and resonance interaction parameters were obtained. These reproduce 668 and 497 rovibrational energies of the pairs of states ν1/ν5 and 2ν1/ν1+ν5 with experimental accuracies, rms=0.00016 and , respectively. “Local mode” behavior of the PH2 fragment is established and discussed in detail.  相似文献   

18.
The a type transitions of the microwave rotational spectra of cyanophosphaacetylene, H2PCCCN, have been investigated in the frequency region between 5 and 26.5 GHz by Fourier transformation microwave (FTMW) spectroscopy. Rotational, centrifugal distortion and 14N nuclear quadrupole coupling constants have been determined. Density functional theory level ab initio calculations were performed to predict the molecular constants, and the predicted values are in good agreement with our experimentally determined results. The 13C and 15N isotopomer transitions were also observed. The derived r0 structure is quite comparable to the calculated H2PCCCN equilibrium geometry.  相似文献   

19.
High-resolution Fourier transform spectrum of phosphine (PH3) at room temperature has been recorded in the region of the 3ν2 band (2730-3100 cm−1) at an apodized resolution of 0.005 cm−1. About 200 vibration-rotation transitions have been least squares fitted with an rms of 0.00039 cm−1 after taking into account the ΔK = ±3 interaction.  相似文献   

20.
In this paper, chemical mechanical planarization (CMP) of amorphous Ge2Sb2Te5 (a-GST) in acidic H2O2 slurry is investigated. It was found that the removal rate of a-GST is strongly dependent on H2O2 concentration and gradually increases with the increase in H2O2 concentration, but the static etch rate first increases and then slowly decreases with the increase in H2O2 concentration. To understand the chemical reaction behavior of H2O2 on the a-GST surface, the potentiodynamic polarization curve, surface morphology and cross-section of a-GST immersed in acidic slurry are measured and the results reveal that a-GST exhibits a from active to passive behavior for from low to high concentration of H2O2 . Finally, a possible removal mechanism of a-GST in different concentrations of H2O2 in the acidic slurry is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号