首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of the thiosemicarbazones 4-FC6H4C(Me)NN(H)C(S)NHR, (R = Me, a; Ph, b) and 2-ClC6H4C(Me)NN(H)C(S)NHR (R = Ph, c) with lithium tetrachloropalladate(II) in methanol or palladium(II) acetate in acetic acid gave the tetranuclear cyclometallated complex [Pd{4-FC6H3C(Me)NNC(S)NHR}]4 (1a, 1b) and [Pd{2-ClC6H3C(Me)NNC(S)NHPh}]4 (1c). Reaction of these tetramers with the diphosphines dppe, t-dppe, dppp or dppb in a 1:2 molar ratio gave the dinuclear cyclometallated complexes [(Pd{4-FC6H3C(Me)NNC(S)NHR})2(μ-Ph2P(CH2)nPPh2)], (n = 2, 2a, 2b; 3, 4a, 4b; 4, 5a, 5b), [(Pd{4-FC6H3C(Me)NNC(S)NHPh})2(μ-Ph2PCHCHPPh2)], (3a, 3b) and [(Pd{2-ClC6H3C(Me)NNC(S)NHR})2(μ-Ph2P(CH2)nPPh2)], (n = 2, 2c, 2d; 3, 4c, 4d; 4, 5c, 5d), [(Pd{2-ClC6H3C(Me)NNC(S)NHPh})2(μ-PPh2CHCHPPh2)], (3c, 3d). The X-ray crystal structure of the ligand b and the complexes 3c, 4a and 4d were determined. The structures of complexes 4a and 4d show that the different disposition of the chain cyclometallated of the thiosemicarbazones (in the same orientation or in the opposite one) is due to the different H bonds produced.  相似文献   

2.
Kai-Min Wu 《Tetrahedron》2005,61(41):9679-9687
Three pendant benzamidines [Ph-C(NC6H5)-{NH(CH2)2NMe2}] (1), [Ph-C(NC6H5)-{NH(CH2Py)}] (2) and [Ph-C(NC6H5)-{NH(o-C6H4)(oxazoline)}] (3) are described. Reactions of 1, 2 or 3 with one molar equivalent of Pd(OAc)2 in THF give the palladacyclic complexes [Ph-C{-NH(η1-C6H4)}{N(CH2)2NMe2}]Pd(OAc) (4), [Ph-C{-NH(η1-C6H4)}{N (CH2Py)}]Pd(OAc) (5) and [Ph-C{-NH(η1-C6H4)}{N(o-C6H4)(oxazoline)}]Pd(OAc) (6), respectively. Treatment of 4, 5 or 6 with excess of LiCl in chloroform affords [Ph-C{-NH(η1-C6H4)}{N(CH2)2NMe2}]PdCl (7), [Ph-C{-NH(η1-C6H4)}{N(CH2Py)}]PdCl (8) and [Ph-C{-NH(η1-C6H4)}{N(o-C6H4)(oxazoline)}]PdCl (9). The crystal and molecular structures are reported for compounds 1, 3, 5, 6 and 7. The application of these palladacyclic complexes to the Suzuki and Heck coupling reactions was examined.  相似文献   

3.
Reaction of the ligand C6H5N(H)NCMe(C5H4N) (a) with palladium(II) acetate in toluene gave the mononuclear cyclometallated complex [Pd{C6H4N(H)NCMe(C5H4N)}(AcO)] (1a). Reaction of 1a with sodium chloride gave the analogous chlorine compound [Pd{C6H4N(H)NCMe(C5H4N)}(Cl)] (3a) which could also be prepared by reaction of a with lithium tetrachloropalladate and sodium acetate in methanol for 48 h; whereas shorter reaction times afforded the non-cyclometallated complex [Pd{C6H5N(H)NCMe(C5H4N)}(Cl)2] (2a). Reaction of the ligand 2-ClC6H4N(H)NCMe(C5H4N) · HCl (b), with palladium(II) acetate, or with lithium tetrachloropalladate and sodium acetate, yielded the cyclometallated complex [Pd2-ClC6H3N(H)NCMe(C5H4N)(Cl)] (1b). Treatment of 3a and 1b with silver trifluoromethanesulphonate (triflate) and triphenylphosphine in acetone gave the mononuclear complexes [Pd{2-RC6HnN(H)NCMe(C5H4N)}(PPh3)][CF3SO3], (R = H, n = 4, 4a; R = Cl, n = 3, 2b) with the ligand as C,N,N′ terdentate and substitution of chlorine by triphenylphosphine. Reaction of 3a and 1b with silver triflate and the tertiary diphosphine Ph2P(CH2)4PPh2 (dppb) in a 2:1 molar ratio gave the dinuclear cyclometallated complexes [{Pd[2-RC6H3N(H)NCMe(C5H4N)]}2(μ-Ph2P(CH2)4PPh2)][CF3SO3]2 (R = H, 5a; R = Cl, 3b) with a μ2-diphosphine bridging ligand. Similarly, treatment of 3a and 1b with silver triflate and the tertiary triphosphines MeC(CH2PPh2)3 (tripod) and (Ph2PCH2CH2)2PPh (triphos), in 3:1 molar ratio, gave the novel trinuclear complexes [{Pd[C6H4N(H)NCMe(C5H4N)]}33-MeC(CH2Ph2)3}][CF3SO3]3 (6a) and [{Pd[2-ClC6H3N(H)NCMe(C5H4N)]}33-(PPh2CH2CH2)2PPh}][CF3SO3] 3 (4b) regioselectively, with the phosphine as a μ3-bridging ligand. When the reaction between 3a and triphos was carried out in 1:1 molar ratio the mononuclear complex [Pd{C6H4N(H)NCMe(C5H4N)}{(PPh2CH2CH2)2PPh-P,P,P}][ClO4] (7a) was obtained. The crystal structures of 2b, 3a and 4a have been determined by X-ray crystallography.  相似文献   

4.
Treatment of the thiosemicarbazones 2-XC6H4C(Me)NN(H)C(S)NHR (R = Me, X = F, a; R = Et, X = F, b; R = Me, X = Cl, c; R = Et, X = Br, d) with potassium tetrachloropalladate(II) in ethanol, lithium tetrachloropalladate(II) in methanol or palladium(II) acetate in acetic acid, as appropriate, gave the tetranuclear cyclometallated complexes [Pd{2-XC6H3C(Me)NNC(S)NHR}]4 (1a-1d). Reaction of 1a-1d with the diphosphines Ph2PCH2PPh2 (dppm), Ph2P(CH2)2PPh2 (dppe), Ph2P(CH2)3PPh2 (dppp) or trans-Ph2PCHCHPPh2 (trans-dpe) in 1:2 molar ratio gave the dinuclear cyclometallated complexes [{Pd[2-XC6H3C(Me)NNC(S)-NHR]}2(μ-diphosphine-P,P)] (2a-5a, 3b, 3d, 4c, 5c). Reaction of 1a, 1b with the short-bite or long-bite diphosphines, dppm or cis-dpe, in a 1:4 molar ratio gave the mononuclear cyclometallated complexes [Pd{2-XC6H3C(Me)NNC(S)NHR}(diphosphine-P)] (6a, 6b, 7a). The molecular structure of ligand a and of complexes 1a, 3d, 5a, 5c, 6a, 6b and 7a have been determined by X-ray diffraction analysis. The structure of complex 7a shows that the long-bite cis-bis(diphenylphosphino)ethene phosphine appears as monodentate with an uncoordinated phosphorus donor atom.  相似文献   

5.
The crystal structures of amarine (1) and isoamarine (2), important intermediates in the preparation of 1,2-diphenyl-diaminoethane, were successfully determined. Their allylation products, 1,3-diallyl amarine (1)(CH2CHCH2)2Br (3) and isoamarine bromide (2)(CH2CHCH2)2Br (4) [the crystal structures of (1)(CH2CHCH2)2PF6(3-Br + PF6) and (2)(CH2CHCH2)2PF6 (4-Br + PF6) are also successfully determined to confirm allylation products], react with CuBr to afford (1)2(CH2CHCH2)4(Cu2Br4) (5) and (2)(CH2CHCH2)2(Cu2Br3) (6), respectively. Crystal structures of 5 and 6 reveal that 5 is an anion discrete complex without olefin moiety coordination, and 6 has a 1D infinite chain with olefin moiety coordination as a bridging spacer. The fluorescent emission spectra of 5 (λemax = 570 nm) and 6 (λemax = 642 nm) were measured, and display a significant difference that can be used for solid state fluorescent sensing them.  相似文献   

6.
The thiocarbonyl analogue of Vaska’s compound is produced in high yield by first treating IrCl(CO)(PPh3)2 with CS2 and methyl triflate to give [Ir(κ2-C[S]SMe)Cl(CO)(PPh3)2]CF3SO3 (1), secondly, reacting 1 with NaBH4 to give IrHCl(C[S]SMe)(CO)(PPh3)2 (2), and finally heating 2 to induce elimination of both MeSH and CO to produce IrCl(CS)(PPh3)2 (3). When IrCl(CS)(PPh3)2 is treated with Hg(CHCHPh)2 the novel 2-iridathiophene, Ir[SC3H(Ph-3)(CHCHPh-5)]HCl(PPh3)2 (4) is produced. The X-ray crystal structure of the iodo-derivative of 4, Ir[SC3H(Ph-3)(CHCHPh-5)]HI(PPh3)2 (5) confirms the unusual 2-metallathiophene structure. Treatment of IrCl(CS)(PPh3)2 with Hg(CHCPh2)2 produces both a coordinatively unsaturated 1-iridaindene, Ir[C8H5(Ph-3)]Cl(PPh3)2 (6) and a chelated dithiocarboxylate complex, Ir(κ2-S2CCHCPh2)Cl(CHCPh2)(PPh3)2 (7). X-ray crystal structure determinations for 6 and 7 are reported.  相似文献   

7.
The condensation of (butyl)thiocarbene tungsten complex [(OC)5WC(SEt)Bu] (1a) with an α,β-unsaturated secondary acid amide R2CHCHC(O)NHR14 in the presence of POCl3/Et3N gives cyclopentadienimines 12, whereas the isostructural alkoxycarbene complex [(OC)5WC(OEt)Bu] (1c) under similar conditions affords a (N-enamino)ethoxycarbene compound 9. Furthermore, condensation of the (methyl)thiocarbene tungsten complex [(OC)5WC(SEt)Me] (1b) with an amide 4 yields cyclopentenimines 19 and allenylidene complexes 20, whereas the corresponding ethoxycarbene complex [(OC)5WC(OEt)CH3] (1d) forms 4-NH-amino-1-tungsta-1,3,5-hexatrienes 16 under similar conditions.  相似文献   

8.
9.
A study of the reactivity of enantiopure ferrocenylimine (SC)-[FcCHN-CH(Me)(Ph)] {Fc =  (η5-C5H5)Fe{(η5-C5H4)-} (1a) with palladium(II)-allyl complexes [Pd(η3-1R1,3R2-C3H3)(μ-Cl)]2 {R1 = H and R2 = H (2), Ph (3) or R1 = R2 = Ph (4)} is reported. Treatment of 1a with 2 or 3 {in a molar ratio Pd(II):1a = 1} in CH2Cl2 at 298 K produced [Pd(η3-3R2-C3H4){FcCHN-CH(Me)(Ph)}Cl] {R2 = H (5a) or Ph (6a)}. When the reaction was carried out under identical experimental conditions using complex 4 as starting material no evidence for the formation of [Pd(η3-1,3-Ph2-C3H3){FcCHN-CH(Me)(Ph)}Cl] (7a) was found. Additional studies on the reactivity of (SC)-[FcCHN-CH(R3)(CH2OH)] {R3 = Me (1b) or CHMe2 (1c)} with complex 4 showed the importance of the bulk of the substituents on the palladium(II) allyl-complex (2-4) or on the ferrocenylimines (1) in this type of reaction. The crystal structure of 5a showed that: (a) the ferrocenylimine adopts an anti-(E) conformation and behaves as an N-donor ligand, (b) the chloride is in acis-arrangement to the nitrogen and (c) the allyl group binds to the palladium(II) in a η3-fashion. Solution NMR studies of 5a and 6a and [Pd(η3-1,3-Ph2-C3H3){FcCHN-CH(Me)(CH2OH)}Cl] (7b) revealed the coexistence of several isomers in solution. The stoichiometric reaction between 6a and sodium diethyl 2-methylmalonate reveals that the formation of the achiral linear trans-(E) isomer of Ph-CHCH-CH2Nu (8) was preferred over the branched derivative (9). A comparative study of the potential utility of ligand 1a, complex 5a and the amine (SC)-H2N-CH(Me)(Ph) (11) as catalysts in the allylic alkylation of (E)-3-phenyl-2-propenyl (cinnamyl) acetate with the nucleophile diethyl 2-methylmalonate (Nu) is reported.  相似文献   

10.
The reaction of 1,1,4,4-tetrakis[bis(trimethylsilyl)methyl]-1,4-diisopropyltetrasila-2-yne 1 with secondary or primary amines produced amino-substituted disilenes R(R2′N)SiSiHR 2a-d (R = SiiPr[CH(SiMe3)2]2, R2′NEt2N (2a), (CH2CH2)2N (2b), tBu(H)N (2c), and Ph2N (2d)). Spectroscopic and X-ray crystallographic analyses of 2 showed that 2a-c have a nearly coplanar arrangement of the SiSi double bond and the amino group, giving π-conjugation between the SiSi double bond and the lone pair on the nitrogen atom, whereas 2d has a nearly perpendicular arrangement precluding such conjugation. Theoretical calculations indicate that π-conjugation between the π-orbital of the SiSi double bond and the lone pair on the nitrogen atom is markedly influenced by the torsional angle between the SiSi double-bond plane and the amino-group plane.  相似文献   

11.
A series of heterobinuclear ferrocene-ruthenium complexes Fc(CHCH)nRuCl(CO)(PMe3)3 (n = 1, 3; n = 2, 12), Fc(CHCH)RuCl(CO)(Py)(PPh3)2 (4), and trimetallic Fc(CHCH)RuCl(CO)(PPh3)2(Py-E-(CHCH)Fc) (6) have been prepared. The length of the molecular rods is extended by successive insertion of CHCH spacers in the bridging ligands or the ancillary ligands. The respective products have been fully characterized and the structures of 3 and 12 have been established by X-ray crystallography. Electrochemical studies have revealed that ethenyl heterobimetallic complexes display two successive one-electron processes, and that intermetallic electronic communication between the two endgroups is attenuated with the increase of the length of the conjugated bridge. The electrochemical behavior of the trimetallic complex reveals strong electronic communication between ruthenium and ferrocene transmitted through the ethenyl bridge, however, it also reveals a very weak interaction between ruthenium and ferrocene transmitted through the (E)-CHCH-Py bridge.  相似文献   

12.
13.
The alkenylaminoallenylidene complex [Ru(η5-C9H7){CCC(NEt2)[C(Me)CPh2]}{κ(P)-Ph2PCH2CHCH2}(PPh3)][PF6] (2) has been prepared by the reaction of the allenylidene [Ru(η5-C9H7)(CCCPh2){κ(P)-Ph2PCH2CHCH2}(PPh3)][PF6] (1) with the ynamine MeCCNEt2. The reaction proceeds regio- and stereoselectively, and the insertion of the ynamine takes place exclusively at the CβCγ bond of the unsaturated chain. The secondary allenylidene [Ru(η5-C9H7){CCC(H)[C(Me)CPh2]}{κ(P)-Ph2PCH2CHCH2}(PPh3)][PF6] (3) is obtained, in a one-pot synthesis, from the reaction of aminoallenylidene 2 with LiBHEt3 and subsequent treatment with silica. Moreover, the addition of an excess of NaBH4 to a solution of the complex 2 in THF at room temperature gives exclusively the alkynyl complex [Ru(η5-C9H7){CCCH2[C(Me)CPh2]}{κ(P)-Ph2PCH2CHCH2}(PPh3)] (5). The heating of a solution of allenylidene derivative 3 in THF at reflux gives regio- and diastereoselectively the cyclobutylidene complex [Ru(η5-C9H7) (PPh3)][PF6](4) through an intramolecular cycloaddition of the CC allyl and the CαCβ bonds in the allenylidene complex 3. The structure of complex 4 has been determined by single crystal X-ray diffraction analysis.  相似文献   

14.
The study of the reactivity of the cyclopalladated complex [Pd{[(η5-C5H3)-CHN-(C6H4-2-SMe)]Fe(η5-C5H5)}Cl] (1c) with the alkynes R1-CC-R1 (with R1 = CO2Me, Ph or Et) is reported.Compound 1c reacts with the equimolar amount of MeO2C-CC-CO2Me in refluxing CH2Cl2 to give [Pd{[(MeO2C-CC-CO2Me)(η5-C5H3)-CHN-(C6H4-2-SMe)]Fe(η5-C5H5)}Cl] (2c), which arises from the monoinsertion of the alkyne into the σ[Pd-C(sp2, ferrocene)] bond.However, when the reaction was performed using Ph-CC-Ph or Et-CC-Et no evidence of the insertion of these alkynes into the σ[Pd-C(sp2, ferrocene)] bond was detected.In contrast with these results, when 1c was treated with the Tl[BF4] followed by the removal of the TlCl formed and the subsequent addition of MeO2C-CC-CO2Me the reaction gave 2c and [Pd{[(MeO2C-CC-CO2Me)25-C5H3)-CHN-(C6H4-2-SMe)]Fe(η5-C5H5)}][BF4] (3c); but when the alkyne was R1-CC-R1 (with R1 = Ph or Et), the ionic palladacycles [Pd{[(R1-CC-R1)25-C5H3)-CHN-(C6H4-2-SMe)]Fe(η5-C5H5)}][BF4] · CH2Cl2 [with R1 = Ph (5c) or Et (6c)] were isolated. In compounds 3c, 5c and 6c, the mode of binding of the butadienyl unit is η3. The reactions of 2c, 3c, 5c and 6c with PPh3 are also reported. The results obtained from these studies reveal that the σ(Pd-S) bond in 2c is more prone to cleave than in 4c-6c. X-ray crystal structures of 2c, 5c and [Pd{[(MeO2C-CC-CO2Me)(η5-C5H3)-CHN-(C6H4-2-SMe)]Fe(η5-C5H5)}Cl(PPh3)] (7c), are also described. Compound 7c arises from 2c by cleavage of the Pd-S bond and the incorporation of a PPh3 in the coordination sphere of the palladium. A parallel study focused on the reactions of [Pd{[2-CH2-4,6-Me2-C6H2]-CHN-(C6H4-2-SMe)}Cl] (1d) (with a [Csp3,N,S] terdentate group) with the three alkynes reveals that the σPd-C(sp2, ferrocene)] bond of 1c is more reactive than the σ[Pd-C(sp3)] bond of 1d.  相似文献   

15.
Reaction of Pd(AcO)2 with the Schiff base ligands 2-Br-4,5-(OCH2O)C6H2C(H)N(Cy) (a) and 4,5-(OCH2CH2)C6H3C(H)N(Cy) (b) leads to the cyclometallated compounds [Pd{2-Br-4,5-(OCH2O)C6HC(H)N(Cy)-C6,N}(μ-O2CMe)]2 (1a) and [Pd{4,5-(OCH2CH2)C6H2C(H)N(Cy)-C6,N}(μ-O2CMe)]2 (1b), respectively, via C-H activation. Treatment of a with Pd2(dba)3 gave [Pd{4,5-(OCH2O)C6H2C(H)N(Cy)-C2,N}(μ-Br)]2 (6a), via C-Br activation. The metathesis reaction of 1a and 1b with aqueous sodium chloride gave the corresponding cyclopalladated dimers with bridging chloride ligands, 2a and 2b, respectively. Treatment of the halogen-bridged compounds with tertiary tri- and diphosphines in the appropriate molar ratio gave the mono and dinuclear compounds 3a-5a, 7a-9a and 3b-5b. The structure of compounds 3a, 4a, 5a, 8a, 2b, 3b and 5b has been determined by X-ray diffraction analysis.  相似文献   

16.
The fulvene complexes [(η6-C5Me4CH2)Re(CO)2(R)] (1a, RI; 1b, RC6F5) react at the exocyclic methylene carbon with a vinylmagnesium bromide solution to produce the anionic species [(η5-C5Me4CH2CHCH2)Re(CO)2(R)]. Protonation with HCl at 0 °C produces the hydride complexes [trans-5-C5Me4CH2CHCH2)Re(CO)2(R)(H)] (2a, RI; 2b, RC6F5). Thermolysis of an hexane solution of the iodo-hydride (2a) under a CO atmosphere yields the complex [(η5-C5Me4CH2CHCH2)Re(CO)3] (3) and [Re(CO)5I] as by-product. Thermolysis of 2b produced three new products, mainly the chelated complex [(η52-C5Me4CH2CHCH2)Re(CO)2] (4) and complex 3, with a non-coordinated olefin group, in moderated yield, and traces of [Re(CO)5(C6F5)]. Thermolysis of an hexane solution of 2 in presence of an excess of PMe3, afforded the phosphine derivative [(η5-C5Me4CH2CHCH2)Re(CO)2(PMe3)] (5). All the complexes were characterized by IR, 1H, 13C and 31P NMR spectroscopies and mass spectrometry. The molecular structure of 4 has also been determined. The molecule exhibits a formal three-legged piano-stool structure, with two CO groups, and the third position corresponding to the η2-coordination of the propenyl side arm of the η5-C5Me4 ring.  相似文献   

17.
In contrast to the simple diynyl complexes formed in reactions between HCCCCFc and MCl(dppe)Cp∗; (M = Fe, Ru), an analogous reaction with RuCl(PPh3)2Cp∗; in the presence of KPF6 and dbu resulted in dimerisation of the diyne at the Ru centre to afford a mixture of [Ru{η12-C(CCFc)C(L)CHCCCHFc}(PPh3)Cp∗]PF6 (L = dbu 1, PPh32). Similar reactions with RuCl(PR3)2L gave [Ru{η12-C(CCFc)C(dbu)CHCCCHFc}(PR3)L]PF6 (L = Cp, R = Ph 3, m-tol 4; L = η5-C9H7, R = Ph 5). The reaction between 3 and I2, followed by crystallization of the paramagnetic product from MeOH, afforded the dicationic [Ru{C(CCFc)C(dbu)CHC(OMe)C(OMe)CHFc}(PPh3)Cp](I3)26. The molecular structures of 2·2CH2Cl2 and 6.S (S = 2CH2Cl2, C6H6) were determined by single-crystal XRD studies.  相似文献   

18.
Whereas {Ru(dppm)Cp*}2(μ-CCCC) (2) is the only product formed by deprotonation of [{Ru(dppm)Cp*}2{μ(CCHCHC)}]+ with dbu, a mixture of 2 with Ru{CCCHCH(PPh2)2[RuCp*]}(dppm)Cp* (3) and {Cp*Ru(PPh2CHCCH-)}2 (4) is obtained with KOBut. A similar reaction with [{Ru(dppm)Cp*}2{μ(CCMeCMeC)}]+ (5) gave Ru{CCCMeCH(PPh2)2[RuCp*]}(dppm)Cp* (6). X-ray structures of 4, 5 and 6 confirm the presence of the 1-ruthena-2,4-diphosphabicyclo[1.1.1]pentane moiety, which is likely formed by an intramolecular attack of the deprotonated dppm ligand on C(1) of the vinylidene ligand. Protonation of {Ru(dppe)Cp*}2(μ-CCCC) (8-Ru) regenerates its precursor [{Ru(dppe)Cp*}2{μ(CCHCHC)}]2+ (7-Ru). Ready oxidation of the bis(vinylidene) complex affords the cationic carbonyl [Ru(CO)(dppe)Cp*]PF6 (9) (X-ray structure).  相似文献   

19.
Treatment of the chloro-bridged dinuclear complex [Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}(μ-Cl)]2 (1) with homobidentate [P,P], [As,As], [N,N], and heterobidentate [P,As], [P,N] ligands in a 1:1 molar ratio gave the dinuclear complexes [{Pd[3,4-(MeO)2C6H2C(H)N(Cy)-C6,N](Cl)}2{μ-L}] (L = Ph2PC4H6(NH)CH2PPh2 (2); Ph2As(CH2)2AsPh2 (3); 1,3-(NH2CH2)2C6H4 (4); Ph2P(CH2)2AsPh2 (5); Ph2P(CH2)2NH2 (6)), with the bidentate ligands bridging the two cyclometallated fragments.The reaction with the homobidentate ligands in a 1:2 molar ratio in the presence of NaClO4 afforded the mononuclear compounds [[Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}{L-P,P}][ClO4] (L = Ph2PC4H6(NH)CH2PPh2 (7); (o-Tol)2P(CH2)2P(o-Tol)2 (8)), [Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}{Ph2As(CH2)2AsPh2-As,As}][ClO4] (9) and [Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}{L-N,N}][ClO4] (L = NH2(CH2)3NH2 (10); NH2(C6H8)CH2(C6H8)NH2 (11); 1,3-(NH2CH2)2C6H4 (12); 1,3-(NH2)2C5H3N (13); NH2(C6H4)O(C6H4)NH2 (14); NMe2(CH2)2NMe2 (15)), in which the chloro ligands are absent and the bidentate ligands are chelated to the palladium atom.Reaction of 1 with Ph2P(CH2)2AsPh2 in 1:2 molar ratio in acetone in the presence of NH4PF6 afforded the analogous mononuclear compound [Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}{Ph2P(CH2)2AsPh2-P,As}][PF6] (16); whereas reaction with Ph2P(CH2)3NH2 gave [Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}{Ph2P(CH2)3N(CMe2)-P,N}][PF6] (17), derived from intermolecular condensation between the aminophosphine and acetone. Condensation of the NH2 group was precluded by change of solvent, using dichloromethane.Iminophoshines also reacted with 1 in 1:2 molar ratio in acetone to give a new series of mononuclear cyclometallated complexes: [Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}{L-P,N}][ClO4] (L = Ph2PC6H4C(H)NCy (20); Ph2PC6H4C(H)NC(CH3)3 (21); Ph2PC6H4C(H)NNMe2 (22); Ph2PC6H4C(H)NNHMe (23); Ph2PC6H4C(H)NNHPh (24)). Analogous complexes with a stable P,O-chelate were obtained using bidentate [P,O] donor ligands: [Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}{L-P,O}][Cl] (L = 2-(Ph2P)C6H4CHO (25); Ph2PN(Me)C(O)Me (26)).The crystal structures of compounds 1, 5, 15, 16, 18, 20 have been determined by X-ray crystallography.  相似文献   

20.
The reaction of (Ph3P)3RuCl2 with 1,1-diphenyl-2-propyn-1-ol was investigated in various solvents. The reaction in thf under reflux is reported to produce the (PPh3)2Cl2Ru(3-phenylindenylidene) complex (3) which has undergone rearrangement of the allenylidene C3-spine. We have improved the reliability of the reported synthesis by adding acetyl chloride which converts the formed water of the reaction and thus increases the acidity of the reaction solution. Without the additive, we observed the exclusive formation of an intermediate of the transformation and identified it as dinuclear (PPh3)2ClRu(μ-Cl)3(PPh3)2RuCCCPh2 complex (5). The reaction of (Ph3P)3−4RuCl2 with 1,1-diphenyl-2-propyn-1-ol in CH2Cl2 or C2H4Cl2 under reflux in the presence of excess conc. aqueous HCl afforded the new, neutral (PPh3)2Cl3RuC-CHCPh2 carbyne complex (7), an HCl adduct of previously elusive (PPh3)2Cl2RuCCCPh2 complex 6 in high yields. In contrast to the formation of complex 3, the reaction in a non-coordinating solvent did not afford the rearrangement of the allenylidene C3-spine. Complex 7 was converted into complex 3 in thf under reflux under loss of a molecule HCl. Complex 7 was converted with triethylamine under loss of HCl to complex 6. Pentacoordinate complex 6 was crystallized in the presence of O-donor ligands (EtOH, MeOH and H2O) to give hexacoordinate (PPh3)2Cl2(ROH)RuCCCPh2 (R = H, CH3, C2H5) complexes (9)-(11) with the O-donor coordinating in trans-position to the allenylidene moiety. The reaction of complex 7 with 2 equiv. of 4-(N,N-dimethylamino)pyridine (DMAP) gave hexacoordinate (PPh3)2Cl2(DMAP)RuCCCPh2complex (12) with one molecule DMAP also coordinating in trans-position to the allenylidene group. Methanol and acetic acid in the absence of strong bases afforded the Fischer-carbene complexes (PPh3)2Cl2RuC(OCH3)-CHCPh2 (14) and (PPh3)2Cl2RuC(OAc)-CHCPh2 (15) where the nucleophile added to the α-carbon atom. The structures of complexes 5, 7, 9-11, 14, and 15 were solved via X-ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号