首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New μ-vinylalkylidene complexes cis-[Fe2{μ-η13-Cγ(R′)Cβ(R″)CαHN(Me)(R)}(μ-CO)(CO)(Cp)2] (R = Me, R′ = R″ = Me, 3a; R = Me, R′ = R″ = Et, 3b; R = Me, R′ = R″ = Ph, 3c; R = CH2Ph, R′ = R″ = Me, 3d; R = CH2Ph, R′ = R″ = COOMe, 3e; R = CH2 Ph, R′ = SiMe3, R″ = Me, 3f) have been obtained b yreacting the corresponding vinyliminium complexes [Fe2{μ-η13-Cγ(R′)Cβ(R″)CαN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (2a-f) with NaBH4. The formation of 3a-f occurs via selective hydride addition at the iminium carbon (Cα) of the precursors 2a-f. By contrast, the vinyliminium cis-[Fe2{μ-η13-Cγ (R′) = Cβ(R″)Cα = N(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3] (R′ = R″ = COOMe, 4a; R′ = R″ = Me, 4b; R′ = Prn, R″ = Me, 4c; Prn = CH2CH2CH3, Xyl = 2,6-Me2C6H3) undergo H addition at the adjacent Cβ, affording the bis-alkylidene complexes cis-[Fe2{μ-η12-C(R′)C(H)(R″)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2], (5a-c). The cis and trans isomers of [Fe2{μ-η13-Cγ(Et)Cβ(Et)CαN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3] (4d) react differently with NaBH4: the former reacts at Cα yielding cis-[Fe2{μ-η13-Cγ(Et)Cβ(Et)CαHN(Me)(Xyl)}(μ-CO)(CO)(Cp)2], 6a, whereas the hydride attack occurs at Cβ of the latter, leading to the formation of the bis alkylidene trans-[Fe2{μ-η12-C(Et)C(H)(Et)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2] (5d). The structure of 5d has been determined by an X-ray diffraction study. Other μ-vinylalkylidene complexes cis-[Fe2{μ-η13-Cγ(R′)Cβ(R″)CαHN(Me)(Xyl)}(μ-CO)(CO)(Cp)2], (R′ = R″ = Ph, 6b; R′ = R″ = Me, 6c) have been prepared, and the structure of 6c has been determined by X-ray diffraction. Compound 6b results from treatment of cis-[Fe2{μ-η13-Cγ(Ph)Cβ(Ph)CαN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3] (4e) with NaBH4, whereas 6c has been obtained by reacting 4b with LiHBEt3. Both cis-4d and trans-4d react with LiHBEt3 affording cis-6a.  相似文献   

2.
o-Phenylene-bridged trimethylcyclopentadienyl/amido titanium complexes [(η5-2,3,5-Me3C5H)C6H4NR-κN]TiCl2 (18, R = CH3; 19, R = CH2CH3; 20, R = CH2C(CH3)3; 21, R = CH2(C6H11)) and zirconium complexes {[(η5-2,3,5-Me3C5H)C6H4NR-κN]ZrCl-μCl}2 (22, R = CH3; 23, R = CH2CH3; 24, R = CH2C(CH3)3; 25, R = CH2(C6H11); 26, R = C6H11; 27, R = CH(CH2CH3)2) are prepared via a key step of the Suzuki-coupling reaction between 2-dihydroxyboryl-3-methyl-2-cyclopenten-1-one (2) and the corresponding bromoaniline compounds. The molecular structures of titanium complexes 18 and 19 and dinuclear zirconium complexes 24 and 26 were confirmed by X-ray crystallography. The Cp(centroid)-Ti-N and Cp(centroid)-Zr-N angles are smaller, respectively, than those observed for the Me2Si-bridged complex [Me2Si(η5-Me4C5)(NtBu)]TiCl2 and its Zr-analogue, indicating that the o-phenylene-bridged complexes are more constrained than the Me2Si-bridged complex. Titanium complex 19 exhibits comparable activity and comonomer incorporation to the CGC ([Me2Si(η5-Me4C5)(NtBu)]TiCl2) in ethylene/1-octene copolymerization. Complex 19 produces a higher molecular-weight polymer than CGC.  相似文献   

3.
The bridging aminocarbyne complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3] (R = Me, 1a; Xyl, 1b; 4-C6H4OMe, 1c; Xyl = 2,6-Me2C6 H3) react with acrylonitrile or methyl acrylate, in the presence of Me3NO and NaH, to give the corresponding μ-allylidene complexes [Fe2{μ-η13- Cα(N(Me)(R))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R = Me, R′ = CN, 3a; R = Xyl, R′ = CN, 3b; R = 4-C6H4OMe, R′ = CN, 3c; R = Me, R′ = CO2Me, 3d; R = 4-C6H4OMe, R′ = CO2Me, 3e). Likewise, 1a reacts with styrene or diethyl maleate, under the same reaction conditions, affording the complexes [Fe2{μ-η13-Cα(NMe2)Cβ(R′)Cγ(H)(R″)}(μ-CO)(CO)(Cp)2] (R′ = H, R″ = C6H5, 3f; R′ = R″ = CO2Et, 3g). The corresponding reactions of [Ru2{μ-CN(Me)(CH2Ph)}(μ-CO)(CO)2(Cp)2][SO3CF3] (1d) with acrylonitrile or methyl acrylate afford the complexes [Ru2{μ-η13-Cα(N(Me)(CH2Ph))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R′ = CN, 3h; CO2Me, 3i), respectively.The coupling reaction of olefin with the carbyne carbon is regio- and stereospecific, leading to the formation of only one isomer. C-C bond formation occurs selectively between the less substituted alkene carbon and the aminocarbyne, and the Cβ-H, Cγ-H hydrogen atoms are mutually trans.The reactions with acrylonitrile, leading to 3a-c and 3h involve, as intermediate species, the nitrile complexes [M2{μ-CN(Me)(R)}(μ-CO)(CO)(NC-CHCH2)(Cp)2][SO3CF3] (M = Fe, R = Me, 4a; M = Fe, R = Xyl, 4b; M = Fe, R = 4-C6H4OMe, 4c; M = Ru, R = CH2C6H5, 4d).Compounds 3a, 3d and 3f undergo methylation (by CH3SO3CF3) and protonation (by HSO3CF3) at the nitrogen atom, leading to the formation of the cationic complexes [Fe2{μ-η13-Cα(N(Me)3)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 5a; R = CO2Me, 5b; R = C6H5, 5c) and [Fe2{μ-η13-Cα(N(H)(Me)2)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 6a; R = CO2Me, 6b; R = C6H5, 6c), respectively.Complex 3a, adds the fragment [Fe(CO)2(THF)(Cp)]+, through the nitrile functionality of the bridging ligand, leading to the formation of the complex [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CNFe(CO)2Cp)}(μ-CO)(CO)(Cp)2][SO3CF3] (9).In an analogous reaction, 3a and [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3], in the presence of Me3NO, are assembled to give the tetrameric species [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CN[Fe2{μ- CN(Me)(R)}(μ-CO)(CO)(Cp)2])}(μ-CO)(CO)(Cp)2][SO3CF3] (R = Me, 10a; R = Xyl, 10b; R = 4-C6H4OMe, 10c).The molecular structures of 3a and 3b have been determined by X-ray diffraction studies.  相似文献   

4.
The synthesis of a series of anionic half-sandwich ruthenium-arene complexes [E][RuCl26-p-cymene){PR2(p-Ph3BC6H4)}] (E = Bu4N+: R = Ph, 1a, iPr, 1b or Cy, 1c; E = bis(triphenylphosphine)iminium or PNP+: R = Ph, 1a′, iPr, 1b′ or Cy, 1c′) are reported. X-ray crystallographic studies of 1a′ and 1b′ confirmed the three-legged piano-stool coordination geometry. In solution, complexes 1a-c and 1a-c′ are proposed to form monomer-dimer equilibria as a result of chloride ligand dissociation. Complexes 1a-c and 1a-c′ also form the formally neutral zwitterionic complexes [RuCl(L)(η6-p-cymene){PR2(p-Ph3BC6H4)}] (L = pyridine: R = Ph, 2a, iPr, 2b or Cy, 2c; L = MeCN: R = Ph, 3a, iPr, 3b or Cy, 3c) via chloride ligand abstraction using AgNO3 or MeOTf.  相似文献   

5.
The bridging diiron thiocarbyne complex [Fe2{μ-CS(Me)}(μ-CO)(CO)2(Cp)2][SO3CF3] (1) reacts with activated olefins (methyl acrylate, acrylonitrile, styrene, diethyl maleate), in the presence of Me3NO and NaH, to give the corresponding μ-allylidene complexes [Fe2{μ-η13-Cα(SMe)Cβ(R′)Cγ(H)(R″)} (μ-CO)(CO)(Cp)2] (R″ = CO2Me, R′ = H, 3a; R″ = CN, R′ = H, 3b; R″ = C6H5, R′ = H, 3c; R″ = R′ = CO2Et, 3d). The coupling reaction of olefin with thiocarbyne is regio- and stereospecific, leading to the formation of only one isomer. C-C bond formation occurs between the less substituted alkene carbon and the thiocarbyne. Moreover, olefinic hydrogens of the bridging ligands are mutually trans.The reactions of 3a-b with MeSO3CF3 result, selectively, in the formation of the cationic μ-sulphonium allylidene complexes [Fe2{μ-η13-Cα(SMe2)Cβ (H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CO2Me, 4a; R = CN, 4b). Compound 4a undergoes displacement of the SMe2 group by nucleophiles such as NaBH4, NBu4CN and NaOMe, affording the complexes [Fe2{μ-η13-Cα(R)Cβ (H)Cγ(H)(CO2Me)}(μ-CO)(CO)(Cp)2] (R = H, 5a; R = CN, 5b; R = OMe, 5c), respectively. The molecular structures of 3a and 5a have been determined by X-ray diffraction studies.  相似文献   

6.
The allyl-substituted group 4 metal complexes [M{(R)CH(η5-C5Me4)(η5-C5H4)}Cl2] [M = Ti, R = CH2CHCH2, (2); R = CH2C(CH3)CH2 (3); M = Zr, R = CH2CHCH2 (4), R = CH2C(CH3)CH2 (5)] have been synthesized by the reaction of allyl ansa-magnesocene derivatives and the tetrachloride salts of the corresponding transition metal. The dialkyl complexes ] [M = Ti, R = CH2=CHCH2, R′ = Me (6), R′ = CH2Ph (7); R = CH2C(CH3)CH2, R′ = Me (8), R′ = CH2Ph (9); M = Zr, R = CH2CHCH2, R′ = Me (10), R′ = CH2Ph (11); R = CH2C(CH3)CH2, R′ = Me (12), R′ = CH2Ph (13)] have been synthesized by the reaction of the corresponding ansa-metallocene dichloride complexes 2-5 and two molar equivalents of the alkyl Grignard reagent. Compounds 2-5 reacted with H2 under catalytic conditions (Wilkinson’s catalyst or Pd/C) to give the hydrogenation products [M{(R)CH(η5-C5Me4)(η5-C5H4)}Cl2] [M = Ti and R = CH2CH2CH3 (14) or R = CH2CH(CH3)2 (15); M = Zr and R = CH2CH2CH3 (16) or R = CH2CH(CH3)2 (17)]. The reactivity of 2-5 has also been tested in hydroboration and hydrosilylation reactions. The hydroboration reactions of 3, 4 and 5 with 9-borabicyclo[3.3.1]nonane (9-BBN) yielded the complexes [M{(9-BBN)CH2CH(R)CH2CH(η5-C5Me4)(η5-C5H4)}Cl2] [M = Ti and R = H (18); M = Zr and R = H (19) or R = CH3 (20)]. The reaction with the silane reagents HSiMe2Cl gave the corresponding [M{ClMe2SiCH2CHRCH2CH(η5-C5Me4)(η5-C5H4)}Cl2] [M = Ti and R = H (21); M = Zr and R = H (22) or R = CH3 (23)]. The reaction of 22 with t-BuMe2SiOH produced a new complex [Zr{t-BuMe2SiOSi(Me2)CH2CH2CH2CH(η5-C5Me4)(η5-C5H4)}Cl2] (24) through the formation of Si-O-Si bonds. On the other hand, reactivity studies of some zirconocene complexes were carried out, with the insertion reaction of phenyl isocyanate (PhNCO) into the zirconium-carbon σ-bond of [Zr{(n-Bu)CH(η5-C5Me4)(η5-C5H4)}2Me2] (25) giving [{(n-Bu)CH(η5-C5Me4)(η5-C5H4)]}Zr{Me{κ2-O,N-OC(Me)NPh}] as a mixture of two isomers 26a-b. The reaction of [Zr{(n-Bu)(H)C(η5-C5Me4)(η5-C5H4)}(CH2Ph)2] (27) with CO also provided a mixture of two isomers [{(n-Bu)CH(η5-C5Me4)(η5-C5H4)]}Zr(CH2Ph){κ2-O,C-COCH2Ph}] 28a-b. The molecular structures of 4, 11, 16 and 17 have been determined by single-crystal X-ray diffraction studies.  相似文献   

7.
The μ-aminocarbyne complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(NCMe)(Cp)2][SO3CF3] (R = Me, 1a; Xyl, 1b; Xyl = 2,6-Me2C6H3) react with ethynylferrocene to give the corresponding bridging vinyliminium complexes [Fe2{μ-η13-CN(Me)(R)CHC(Fc)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = Me, 2a; R = Xyl, 2b). Insertion of the ethynylferrocene in the metal-carbyne bond is regiospecific, and leads to the formation of only one isomer.Complexes 2a and 2b undergo hydride addition (by NaBH4) affording the enaminoalkylidene complex [Fe2{μ-η13-C(H)(N(Me)2)CHC(Fc)}(μ-CO)(CO)(Cp)2] (3a) and the bis-alkylidene [Fe2{μ-η12-C(N(Me)(Xyl))CH2C(Fc)}(μ-CO)(CO)(Cp)2] (3b), respectively. Upon treatment with NaH, compounds 2a and 2b undergo fragmentation, affording the 1-metalla-2-aminocyclopenta-1,3-dien-5-one complexes [Fe(CO)(Cp){C(N(Me)(R))}CHC(Fc)C(O)}] (R = Me, 4a; R = Xyl, 4b).The molecular structures of 2b, 3b and 4b have been determined by X-ray diffraction studies.  相似文献   

8.
Primary alkynes R′CCH [R′ = Me3Si, Tol, CH2OH, CO2Me, (CH2)4CCH, Me] insert into the metal-carbon bond of diruthenium μ-aminocarbynes [Ru2{μ-CN(Me)(R)}(μ-CO)(CO)(MeCN)(Cp)2][SO3CF3] [R = 2,6-Me2C6H3 (Xyl), 1a; CH2Ph (Bz), 1b; Me, 1c] to give the vinyliminium complexes [Ru2{μ-η13-C(R′)CHCN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] [R = Xyl, R′ = Me3Si, 2a; R = Bz, R′ = Me3Si, 2b; R = Me, R′ = Me3Si, 2c; R = Xyl, R′ = Tol, 3a; R = Bz, R′ = Tol, 3b; R = Bz, R′ = CH2OH, 4; R = Bz, R′ = CO2Me, 5a; R = Me, R′ = CO2Me, 5b; R = Xyl, R′ = (CH2)4CCH, 6; R = Xyl, R′ = Me, 7a; R = Bz, R′ = Me, 7b; R = Me, R′ = Me, 7c]. The related compound [Ru2{μ-η13-C[C(Me)CH2]CHCN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3], (9) is better prepared by reacting [Ru2{μ-CN(Me)(Xyl)}(μ-CO)(CO)(Cl)(Cp)2] (8) with AgSO3CF3 in the presence of HCCC(Me)CH2 in CH2Cl2 at low temperature.In a similar way, also secondary alkynes can be inserted to give the new complexes [Ru2{μ-η13-C(R′)C(R′)CN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = Bz, R′ = CO2Me, 11; R = Xyl, R′ = Et, 12a; R = Bz, R′ = Et, 12b; R = Xyl, R′ = Me, 13). The reactions of 2-7, 9, 11-13 with hydrides (i.e., NaBH4, NaH) have been also studied, affording μ-vinylalkylidene complexes [Ru2{μ-η13-C(R′)C(R″)C(H)N(Me)(R)}(μ-CO)(CO)(Cp)2] (R = Bz, R′ = Me3Si, R″ = H, 14a; R = Me, R′ = Me3Si, R″ = H, 14b; R = Bz, R′ = Tol, R″ = H, 15; R = Bz, R′ = R″ = Et, 16), bis-alkylidene complexes [Ru2{μ-η12-C(R′)C(H)(R″)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2] (R′ = Me3Si, R″ = H, 17; R′ = R″ = Et, 18), acetylide compounds [Ru2{μ-CN(Me)(R)}(μ-CO)(CO)(CCR′)(Cp)2] (R = Xyl, R′ = Tol, 19; R = Bz, R′ = Me3Si, 20; R = Xyl, R′ = Me, 21) or the tetranuclear species [Ru2{μ-η12-C(Me)CCN(Me)(Bz)}(μ-CO)(CO)(Cp)2]2 (23) depending on the properties of the hydride and the substituents on the complex. Chromatography of 21 on alumina results in its conversion into [Ru2{μ-η31-C[N(Me)(Xyl)]C(H)CCH2}(μ-CO)(CO)(Cp)2] (22). The crystal structures of 2a[CF3SO3] · 0.5CH2Cl2, 12a[CF3SO3] and 22 have been determined by X-ray diffraction studies.  相似文献   

9.
The diiron vinyliminium complexes [Fe2{μ-η13-C(R′)C(H)CN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R=Me, R′ = SiMe3 (1a); R = Me, R′ = CH2OH (1b); R = CH2Ph, R′ = Tol (1c), Tol = 4-MeC6H4; R = CH2Ph, R′ = COOMe (1d); R = CH2Ph, R′ = SiMe3 (1e)) undergo regio- and stereo-selective addition by cyanide ion (from ), affording the corresponding bridging cyano-functionalized allylidene compounds [Fe2{μ-η13-C(R′)C(H)C(CN)N(Me)(R)}(μ-CO)(CO)(Cp)2] (3a-e), in good yields. Similarly, the diiron vinyliminium complexes [Fe2{μ-η13-C(R′)C(R′)CN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = R′ = Me (2a); R = Me, R′ = Ph (2b); R = CH2Ph, R′ = Me (2c); R = CH2Ph, R′ = COOMe (2d)) react with cyanide and yield [Fe2{μ-η13-C(R′)C(R′)C(CN)N(Me)(R)}(μ-CO)(CO)(Cp)2] (9a-d). The reactions of the vinyliminium complex [Fe2{μ-η13-C(Tol)CHCN(Me)(4-C6H4CF3)}(μ-CO)(CO)(Cp)2][SO3CF3] (4) with NaBH4 and afford the allylidene [Fe2{μ-C(Tol)C(H)C(H)N(Me)(C6H4CF3)}(μ-CO)(CO)(Cp)2] (5) and the cyanoallylidene [Fe2{μ-C(Tol)C(H)C(CN)N(Me)(C6H4CF3)}(μ-CO)(CO)(Cp)2] (6), respectively. Analogously, the diruthenium vinyliminium complex [Ru2{μ-η13-C(SiMe3)CHCN(Me)(CH2Ph)}(μ-CO)(CO)(Cp)2][SO3CF3] (7) reacts with to give [Ru2{μ-η13-C(SiMe3)CHC(CN)N(Me)(CH2Ph)}(μ-CO)(CO)(Cp)2] (8).Finally, cyanide addition to [Fe2{μ-η13-C(COOMe)C(COOMe)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3] (2e) (Xyl = 2,6-Me2C6H3), yields the cyano-functionalized bis-alkylidene complex [Fe2{μ-η12-C(COOMe)C(COOMe)(CN)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2] (10). The molecular structures of 3a and 9a have been elucidated by X-ray diffraction.  相似文献   

10.
A series of titanium complexes [(Ar)NC(CF3)CHC(R)O]2TiCl2 (4b: Ar = -C6H4OMe(p), R = Ph; 4c: Ar = -C6H4Me(p), R = Ph; 4d: Ar = -C6H4Me(o), R = Ph; 4e: Ar = α-Naphthyl, R = Ph; 4f: Ar = -C6H5, R = t-Bu; 4g: Ar = -C6H4OMe(p); R = t-Bu; 4h: Ar = -C6H4Me(p); R = t-Bu; 4i: Ar = -C6H4Me(o); R = t-Bu) has been synthesized and characterized. X-ray crystal structures reveal that complexes 4b, 4c and 4h adopt distorted octahedral geometry around the titanium center. With modified methylaluminoxane (MMAO) as a cocatalyst, complexes 4b-c and 4f-i are active catalysts for ethylene polymerization and ethylene/norbornene copolymerization, and produce high molecular weight polyethylenes and ethylene/norbornene alternating copolymers. In addition, the complex 4c/MMAO catalyst system exhibits the characteristics of a quasi-living copolymerization of ethylene and norbornene with narrow molecular weight distribution.  相似文献   

11.
The diiron complexes [Fe(Cp)(CO){μ-η22-C[N(Me)(R)]NC(C6H3R′)CCH(Tol)}Fe(Cp)(CO)] (R = Xyl, R′ = H, 3a; R = Xyl, R′ = Br, 3b; R = Xyl, R′ = OMe, 3c; R = Xyl, R′ = CO2Me, 3d; R = Xyl, R′ = CF3, 3e; R = Me, R′ = H, 3f; R = Me, R′ = CF3, 3g) are obtained in good yields from the reaction of [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(p-NCC6H4R′)(Cp)2]+ (R = Xyl, R′ = H, 2a; R = Xyl, R′ = Br, 2b; R = Xyl, R′ = OMe, 2c; R = Xyl, R′ = CO2Me, 2d; R = Xyl, R′ = CF3, 2e; R = Me, R′ = H, 2f; R = Me, R′ = CF3, 2g) with TolCCLi. The formation of 3 involves addition of the acetylide at the coordinated nitrile and C-N coupling with the bridging aminocarbyne together with orthometallation of the p-substituted aromatic ring and breaking of the Fe-Fe bond. Complexes 3a-e which contain the N(Me)(Xyl) group exist in solution as mixtures of the E-trans and Z-trans isomers, whereas the compounds 3f,g, which posses an exocyclic NMe2 group, exist only in the Z-cis form. The crystal structures of Z-trans-3b, E-trans-3c, Z-trans-3e and Z-cis-3g have been determined by X-ray diffraction experiments.  相似文献   

12.
While photochemical reaction of C60 with an equimolar amount of Mo(CO)46-Ph2PC6H5)2Cr (1) in toluene at room temperature produced bimetallic Mo/Cr fullerene complex fac/mer-(η2-C60)Mo(CO)3[(η6-Ph2PC6H5)2Cr] (2) in 87% yield, the thermal reaction of an equimolar mixture of C60, M(dba)2 (M = Pd, Pt; dba = dibenzylideneacetone) and (η6-Ph2PC6H5)2Cr (3) in toluene at room temperature afforded bimetallic M/Cr fullerene complexes (η2-C60)M[(η6-Ph2PC6H5)2Cr] (4, M = Pd; 5, M = Pt) in 88% and 92% yields, respectively. Products 2, 4 and 5 are the first transition-metal fullerene complexes containing bis(η6-benzene)chromium moieties. While 2, 4 and 5 were characterized by elemental analysis and spectroscopy, the crystal molecular structures of 4 along with the starting materials 1 and 3 have been determined by X-ray diffraction techniques.  相似文献   

13.
The new ansa-titanocene dichloride [{(SiMePh)(η5-C5H4)2}TiCl2] (1) was prepared by one pot reaction, whereas synthesis of its methylated analogue [{(SiMePh)(η5-C5Me4)2}TiCl2] (3) was performed in two steps with isolation of corresponding silane intermediate SiMePh(HC5Me4)2 (2). The reaction of 1 and 3 with TiCl4 afforded the dinuclear complexes [(SiMePh){(η5-C5R4)TiCl3}2] (R = H (4) and R = Me (5)). The catalysts formed from 4 and 5 after their activation with excess MAO exhibited a modest activity in ethylene polymerization. The polymer products consisted of high molar mass linear polyethylenes with a broad molar mass distribution. The presence of three paramagnetic titanium species in the mixture 4/MAO was revealed by EPR spectroscopy. All new prepared compounds 1-5 were characterized by multinuclear NMR, EI-MS, IR, and solid-state structures of 1, 3 and 5 were determined by X-ray single crystal diffraction.  相似文献   

14.
The dimeric starting material [Ru(η6-p-cymene)(μ-Cl)Cl]2 reacts with the phosphino-amides o-Ph2P–C6H4CO–NH–R [R = iPr (a), Ph (b), 4-MeC6H4 (c), 4-FC6H4 (d)] to give the mononuclear compounds 1ad [RuCl(η6-p-cymene)(o-Ph2P–C6H4–CO–NH–R)]Cl. The subsequent reaction of these complexes with KPF6 produced the cationic species 2ad [RuCl(η6-p-cymene)(o-Ph2P–C6H4–CO–NH–R)][PF6] in which phosphino-amides also act as rigid P,O-chelating ligands. The molecular structures of 2bd were determined crystallographically. Amide deprotonation is achieved when complexes 2ad were made react with 1 M aqueous solution of KOH, affording the corresponding neutral species 3ad [RuCl(η6-p-cymene)(o-Ph2P–C6H4–CO–N–R)] in which a P,N-coordination mode is suggested.  相似文献   

15.
The zwitterionic vinyliminium complex [Fe2{μ-η13-C(R′)C(S)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2] (2a) (R′ = p-Me-C6H4 (Tol), Xyl = 2,6-Me2C6H3) undergoes electrophilic addition at the S atom by HSO3CF3, MeSO3CF3, SiMe3Cl, BrCH2Ph, ICH2CHCH2 affording the complexes [Fe2{μ-η13-C(Tol)C(SX)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][Y] (X =  H, Y = SO3CF3, 4a; X = Me, Y = SO3CF3, 4b; X = SiMe3, Y = Cl, 4c; X = CH2Ph, Y = Br, 4d; X = CH2CHCH2, Y = I, 4e).Compound 2a and the corresponding vinyliminium complexes 2b and 2c (R′ = CH2OH, 2b; R′ = Me, 2c) react also with etherated BF3 leading to the formation of the corresponding S-adducts [Fe2{μ-η13-C(R′)C(SBF3)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2] (R′ = Tol, 5a; R′ = CH2OH, 5b; R′ = Me, 5c).In analogous reactions, the zwitterionic vinyliminium complexes undergo S-metalation upon treatment with in situ generated [Fp]+[SO3CF3] [Fp = Fe(CO)2(Cp)], leading to the formation of [Fe2{μ-η13-C(R′)C(S-Fp)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3](R′ = CH2OH, 6a; R′ = Me, 6b; R′ = Bun, 6c).Similarly, zwitterionic vinyliminium containing Se in the place of S also undergo Se-electrophilic addition. Thus, the complexes [Fe2{μ-η13-C(R′)C(SeX)CN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = X = Me, R′ = Tol, 7a; R = Xyl, R′ = Me, X = Fp+, 7b) are obtained upon treatment of the neutral zwitterionic precursors with MeSO3CF3 and [Fp][SO3CF3], respectively.Alkylation at the S or Se atom of the bridging ligand is also accomplished by CH2Cl2, used as solvent, although the reaction is slower compared to more efficient alkylating reagents. The complexes formed by this route are [Fe2{μ-η13-C(R′)C(E-CH2Cl)CN(Me)(R)}(μ-CO)(CO)(Cp)2][X] [E = S, R = Xyl, R′ = Tol, X = Cl, 8a; E = S, R = Xyl, R′ = Me, X = Cl, 8b; E = Se, R = R′ = Me, X = BPh4, 8c].Finally, treatment of the zwitterionic vinyliminium complexes with I2 results in the oxidative coupling with formation of S-S (disulfide) or Se-Se (diselenide) bond. The reactions, performed in the presence of NaBPh4 afford the tetranuclear complexes [Fe2{μ-η13-C(R′)C(E)CN(Me)(R)}(μ-CO)(CO)(Cp)2]2[BPh4]2 [R = Xyl, R′ = CH2OH, E = S, 9a; R = Xyl, R′ = Me, E = S, 9b; R = Xyl, R′ = Bun, E = S, 9c; R = Xyl, R′ = Me, E = Se, 9d; R = Me, R′ = Bun, E = Se, 9e].The molecular structures of 4a, 8c and 9e have been determined by X-ray diffraction studies.  相似文献   

16.
The trifluorovinyl phosphine complexes [Cp*RhCl2{PR3−x(CFCF2)x}] (1x = 1, a R = Ph, b Pri, c Et; 2x = 2, R = Ph) have been prepared by treatment of [Cp*RhCl(μ-Cl)]2 with the relevant phosphine. The salt [Cp*RhCl(CNBut){PPh2(CFCF2)}]BF4, 3, was prepared by addition of ButNC to 1a in the presence of NaBF4. The salt [Cp*RhCl{κP,κS-(CF2CF)PPh(C6H4SMe-2)}]BF4 was prepared as a mixture of cis (5a) and trans (5b) isomers by treatment of [Cp*RhCl(μ-Cl)]2 with the phosphine-thioether (CF2CF)PPh(C6H4SMe-2), 4, in the presence of NaBF4. The structures of 1a-c and 5a have been determined by single-crystal X-ray diffraction. Intramolecular dehydrofluorinative carbon-carbon coupling between pentamethylcyclopentadienyl and trifluorovinylphosphine ligands of 1a, 3 and 5 has been attempted. No reaction was observed on treatment of the neutral complex [Cp*RhCl2{PPh2(CFCF2)}], 1a, with proton sponge, however, 5a underwent dehydrofluorinative coupling to yield [{η5,κP,κS-(C5Me4CH2CFCF)PPh(C6H4SMe-2)}RhCl]BF4, 6. Other reactions, in particular addition of HF across the vinyl bonds of 5, occurred leading to a mixture of products. The cation of 3 underwent similar reactions.  相似文献   

17.
Protonation of the trimethylenemethane derivatives, Cp*Zr(σ2,π-C4H6)[N(R1)C(Me)N(R2)] (1a: R1=R2=i-Pr and 1b: R1=Et, R2=t-Bu) (Cp*=η5-C5Me5), by [PhNMe2H][B(C6F5)4] in chlorobenzene at −10 °C provides the cationic methallyl complexes, Cp*Zr(η3-C4H7)[N(R1)C(Me)N(R2)] (2a: R1=R2=i-Pr and 2b: R1=Et, R2=t-Bu), which are thermally robust in solution at elevated temperatures as determined by 1H NMR spectroscopy. Addition of B(C6F5)3 to 1a and 1b provides the zwitterionic allyl complexes, Cp*Zr{η3-CH2C[CH2B(C6F5)3]CH2}[N(R1)C(Me)N(R2)] (3a: R1=R2=i-Pr and 3b: R1=Et, R2=t-Bu). The crystal structures of 2b and 3a have been determined. Neither the cationic complexes 2 or the zwitterionic complexes 3 are active initiators for the Ziegler-Natta polymerization of ethylene and α-olefins.  相似文献   

18.
The organotin(IV) complexes R2Sn(tpu)2 · L [L = 2MeOH, R = Me (1); L = 0: R = n-Bu (2), Ph (3), PhCH2 (4)], R3Sn(Hthpu) [R = Me (5), n-Bu (6), Ph (7), PhCH2 (8)] and (R2SnCl)2 (dtpu) · L [L = H2O, R = Me (9); L = 0: R = n-Bu (10), Ph (11), PhCH2 (12)] have been synthesized, where tpu, Hthpu and dtpu are the anions of 6-thiopurine (Htpu), 2-thio-6-hydroxypurine (H2thpu) and 2,6-dithiopurine (H2dtpu), respectively. All the complexes 1-12 have been characterized by elemental, IR, 1H, 13C and 119Sn NMR spectra analyses. And complexes 1, 2, 7 and 9 have also been determined by X-ray crystallography, complexes 1 and 2 are both six-coordinated with R2Sn coordinated to the thiol/thione S and heterocyclic N atoms but the coordination modes differed. As for complex 7 and 9, the geometries of Sn atoms are distorted trigonal bipyramidal. Moreover, the packing of complexes 1, 2, 7 and 9 are stabilized by the hydrogen bonding and weak interactions.  相似文献   

19.
New metallocene dichlorides [η5-(1,4-Me2-2,3-Ph2-C5H)2TiCl2] (2), [η5-(1,4-Me2-2,3-Ph2-C5H)2ZrCl2] (3) and [η5-(1,4-Me2-2,3-Ph2-C5H)η5-(C5H5)ZrCl2] (4) were prepared from lithium salt of 1,4-dimethyl-2,3-diphenylcyclopentadiene (1) and [TiCl3(THF)3], [ZrCl4] and [η5-(C5H5)ZrCl3(DME)], respectively. Compounds 2-4 were characterized by NMR spectroscopy, EI-MS and IR spectroscopy, and the solid state structure of 3 was determined by single crystal X-ray crystallography. The catalytic systems 3/MAO and 4/MAO were almost inactive in polymerization of ethylene at 30-50 °C, however, they exhibited high activity at temperature 80 °C. The catalyst formed from 2 and excess of MAO was practically inactive at all temperatures.  相似文献   

20.
The SPh functionalized vinyliminium complexes [Fe2{μ-η13-Cγ(R′)Cβ(SPh)CαN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] [R = Xyl, R′ = Me, 2a; R = Me, R′ = Me, 2b; R = 4-C6H4OMe, R′ = Me, 2c; R = Xyl, R′ = CH2OH, 2d; R = Me, R′ = CH2OH, 2e; Xyl = 2,6-Me2C6H3] are generated in high yields by treatment of the corresponding vinyliminium complexes [Fe2{μ-η13-Cγ(R′)Cβ(H)CαN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (1a-e) with NaH in the presence of PhSSPh. Likewise, the diruthenium complex [Ru2{μ-η13-Cγ(Me)Cβ(SPh)CαN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3] (2f) was obtained from the corresponding vinyliminium complex [Ru2{μ-η13-Cγ(Me)Cβ(H)CαN(Me)(Xyl)}(μ-CO)(CO)(Cp)2] (1f). The synthesis of 2c is accompanied by the formation, in comparable amounts, of the aminocarbyne complex [Fe2{μ-CN(Me)(4-C6H4OMe)}(SPh)(μ-CO)(CO)(Cp)2] (3).The molecular structures of 2d, 2e and 3 have been determined by X-ray diffraction studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号