首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mixed metal cluster Cp*IrOs3(μ-H)2(CO)10 (1) reacted readily with a number of group 16 substrates under chemical activation with TMNO. It reacted with C6H5SH to afford the novel cluster Cp*IrOs3(μ-H)3(CO)9(μ-SPh) (2). It also reacted readily with Ph3PSe to afford five new clusters, viz., Cp*IrOs3(μ-H)2(CO)93-Se) (3) Os3(μ-H)2(CO)73-Se)(PPh3)2 (4), Cp*IrOs3(μ-H)2(CO)9(PPh3) (5), Cp*IrOs3(μ-H)23-Se)(CO)8(PPh3) (6) and Cp*IrOs3(μ-H)23-Se)2(CO)7(PPh3) (7). The reaction pathway for this reaction has been studied carefully and suggests that Ph3PSe functioned primarily as a selenium atom transfer agent to give initially the even more reactive 3. The reaction of 1 with di-p-tolyl ditelluride yielded three new clusters, 8-10, which were non-interconverting stereoisomers with the formulation Cp*IrOs3(μ-H)2(μ-Te-p-C6H4CH3)2(CO)8.  相似文献   

2.
The reaction between the mixed-metal tetrahedral cluster Co2Rh2(CO)12 (1) and the electron-poor alkyne methyl propiolate in hexane at room temperature furnishes a mixture of products consisting of Co3Rh(CO)12 (2), Co3Rh(CO)10(μ-HCCCO2Me) (3), Co2Rh2(CO)10(μ-HCCCO2Me) (4), and CoRh3(CO)9(μ-HCCCO2Me)3 (5). The isolation and solution spectroscopic data of these compounds are described, and the solid-state structure of Co2Rh2(CO)10(μ-HCCCO2Me) determined by X-ray diffraction analysis. The title cluster crystallizes in the triclinic space group. The solid-state structure of Co2Rh2(CO)10(μ-HCCCO2Me) provides proof for the regiospecific insertion of the methyl propiolate ligand into the Co–Co bond of the starting cluster Co2Rh2(CO)12. The stability of clusters 3 and 4 in the presence of added methyl propiolate is discussed.  相似文献   

3.
The reaction of the methylidyne-bridged cluster HRu3(CO)10(μ-COMe) (1) with the diphosphine ligand 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) and Me3NO furnishes HRu3(CO)8(μ-COMe)(bpcd) (2) and HRu3(CO)8(Ph2PH)[μ-PPh2CCC(O)CH2C(O)] (3) as the major and minor products, respectively. The 1H and 31P NMR data indicate that the bpcd ligand in 2 is chelated to one of the ruthenium atoms that is bridged by the hydride and methylidyne ligands. Thermolysis of 2 is accompanied by P-Ph bond cleavage and elimination of benzene to yield Ru3(CO)73-COMe)[μ-P(Ph)CC(PPh2)C(O)CH2C(O)] (4). Compound 4 consists of a triangular ruthenium core that is face-capped by μ3-COMe methylidyne and μ-P(Ph)CC(PPh2)C(O)CH2C(O) phosphido ligands. The kinetics for the conversion of 2 → 4 have been measured in toluene solvent over the temperature range 320-343 K, and based on the observed activation parameters and the inhibitory effect of added CO on the reaction, a rate-limiting step involving a dissociative loss of CO is supported. Heating 4 in the presence of H2 afforded the phosphinidene-capped cluster H3Ru3(CO)73-PPh)[μ-CC(PPh2)C(O)CH2C(O)] (5). Crystallographic analysis of 5 has confirmed the loss of the methylidyne moiety and the cleavage of the phosphido PhP-C(dione) bond, and the presence of three edge-bridging hydrides is supported by 1H NMR spectroscopy. The reaction of 4 with added PPh3 and PMe3 has been investigated; the uptake of a single phosphine ligand occurs regiospecifically at one of the phosphido-bound ruthenium centers to give Ru3(CO)6L(μ3-COMe)[μ-P(Ph)CC(PPh2)C(O)CH2C(O)] (PPh3, 6; PMe3, 7). Compound 6 contains 48e- and exhibits a structural motif similar to that found in 4. Compound 7 readily adds a second PMe3 ligand to yield the bis-substituted cluster Ru3(CO)6(PMe3)22-COMe)[μ-P(Ph)CC(PPh2)C(O)CH2C(O)] (8). The solid-state structure of 8 confirms the loss of two ruthenium-ruthenium bonds and the conversion of the original face-capping μ3-COMe ligand to a μ2-COMe moiety that tethers two non-bonding ruthenium centers. The two PMe3 ligands in 8 coordinate to the same ruthenium center, and the 9e- P(Ph)CC(PPh2)C(O)CH2C(O) ligand binds all three ruthenium atoms through the phosphine, phosphido, alkene, and carbonyl moieties. Near-UV irradiation of 8 leads to loss of CO and polyhedral contraction of the triruthenium frame to yield the 48e- cluster Ru3(CO)5(PMe3)23-COMe)[μ-P(Ph)CC(PPh2)C(O)CH2C(O)] (9).  相似文献   

4.
The heteronuclear cluster RuOs3(μ-H)2(CO)13 (1) reacted readily with a number of ditertiary phosphines under chemical activation with trimethylamine-N-oxide. The solid-state and solution structures of these derivatives have been examined. Six structural types have been characterized crystallographically, including one in which a phenyl group migrates from the ditertiary phosphine ligand to the metal framework. There are many more isomers present in solution, most of which are rapidly inter-converting via hydride migrations.  相似文献   

5.
The heteronuclear cluster RuOs3(μ-H)2(CO)13 (1) reacts with indene under thermal activation to afford the novel clusters RuOs3(μ-H)(CO)9(μ-CO)25-C9H7) (3), RuOs3(μ-H)(CO)93522-C9H7) (4) and Ru2Os3(μ-H)(CO)113522-C9H7) (5), the latter two possessing indenyl ligands in the μ3522 bonding mode. Cluster 5 exists as a mixture of two isomers. The inter-relationship among the clusters has also been investigated.  相似文献   

6.
The heteronuclear cluster RuOs3(μ-H)2(CO)13 (4) reacts with refluxing toluene to form the clusters Ru2Os3(μ-H)2(CO)16 (5) RuOs3(CO)9(μ-CO)26-C6H5Me) (6) and Ru2Os3(CO)12(μ-CO)(η6-C6H5Me) (7). Cluster 5 exists as a mixture of five isomers. The inter-relationship among the clusters has also been investigated.  相似文献   

7.
A reaction of the dimer [Mn(CO)4(SPh)]2 with (PPh3)2Pt(C2Ph2) gave the heterometallic complex (CO)4Mn(μ-SPh)Pt(PPh3)2 (I) and its isomer (CO)3(PPh3)Mn(μ-SPh)Pt(PPh3)(CO) (II). A reaction of complex I with a diphosphine ligand (Dppm) yielded the heterometallic complex (CO)3Mn(μ-SPh)Pt(PPh3)(Dppm) (III). Complexes IIII were characterized by X-ray diffraction. In complex I, the single Mn-Pt bond (2.6946(3) ?) is supplemented with a thiolate bridge with the shortened Pt-S and Mn-S bonds (2.3129(5) and 2.2900(6) ?, respectively). Unlike complex I, in complex II, one phosphine group at the Pt atom is exchanged for one CO group at the Mn atom. The Mn-Pt bond (2.633(1) ?) and the thiolate bridge (Pt-S, 2.332(2) ?; Mn-S, 2.291(2) ?) are retained. In complex III, the Mn-Pt bond (2.623(1) ?) is supplemented with thiolate (Pt-S, 2.341(2) ?; Mn-S, 2.292(2) 0?) and Dppm bridges (Pt-P, 2.240(1)?; Mn-P, 2.245(2) ?). Apparently, the Pt atom in complexes IIII is attached to the formally double bond , as in Pt complexes with olefins.  相似文献   

8.
The reaction of [Cp′Cr(CO)2(μ-SBu)]2 (1) (Cp′ = MeC5H4) with (PPh3)2Pt(PhCCPh) gives Cp′Cr(CO)2(μ-SBu)Pt(PPh3)2 (2) which could be regarded as a product of the substitution of acetylene ligand at platinum by a monomeric chromium-thiolate fragment. According to the X-ray diffraction analysis 2 contains single Cr-Pt (2.7538(15)) and Pt-S (2.294(2) Å) bonds while Cr-S bond (2.274(3) Å) is shortened in comparison with ordinary Cr-S bonds (2.4107(4)-2.4311(4) Å) in 1. The bonding between Cr-S fragment and platinum atom is similar to the olefine coordination in their platinum complexes.  相似文献   

9.
Treatment of ruthenium carbonyl, [Ru3(CO)12] with phenylseleno tribromide PhSeBr3 afforded a new triruthenium cluster, [(CO)10Br4Ru3(μ-SePh)2] (1). Its molecular structure was determined by single crystal XRD method (P21/c; a = 10.514(3) Å; b = 10.814(3) Å; c = 19.063(5) Å; β = 105.064(4)°; V = 2093.1(10) Å3) and shown to have two lateral Ru(CO)3Br2 units attached via two PhSe bridges to a Ru(CO)4 center forming a chain-like Ru-Se-Ru-Se-Ru cluster core. This is in contrast with a recently reported reaction of PhTeBr3 with [Ru3(CO)12] which formed a monomeric complex of ruthenium-dicarbonyl-dibromo fragment coordinating two PhTeBr ligands, [(CO)2RuBr2(PhTeBr)2].  相似文献   

10.

Abstract  

Thermolysis of cis-Fe(CO)4(SiCl3)2 results in the formation of the novel compound Fe2(CO)62-SiCl2)3, which was characterized by single crystal X-ray diffraction. Density functional theory calculations were carried out to elucidate possible reaction steps leading to the formation of Fe2(CO)6(SiCl2)3, including CO dissociation and chlorine abstraction by a SiCl3 radical generated from homolytic Fe–Si bond cleavage involving a singlet–triplet intersystem crossing.  相似文献   

11.
A reaction of Cp′Mo(CO)3Cl(Cp′ = MeC5H4) with (PPh3)2Pt(C2Ph2) gave the heterometallic cluster Cp′Mo(μ-CO)2(C2Ph2)Pt2(PPh3)2(CO)Cl (I) as the sole product. According to X-ray diffraction data, complex I contains single Pt-Mo bonds (2.7962(5) and 2.7699(5) ?) but no Pt-Pt bond (Pt…Pt 2.9746(3) ?). The coordinated diphenylacetylene molecule forms two Pt-C σ-bonds (2.054(6) and 2.083(5) ?) and a π-bond to the Mo atom (Mo-C 2.265(6) and 2.272(5) ?; C≡C 1.387(8) ?). Original Russian Text ? A.A. Pasynskii, I.V. Skabitskii, Yu.V. Torubaev, S.S. Shapovalo, 2009, published in Koordinatsionnaya Khimiya, 2009, Vol. 35, No. 6, pp. 410–413.  相似文献   

12.
A Cu(Ⅰ) complex with mix ligands [Cu(HIm)2(PPh3)2](BF4) was synthesized and characterized by elemental analysis, IRspectroscopy and X-ray diffraction crystallography. The crystal belongs to monoclinic system and P21/c space group, with cell parameters, a=1.2836(3)nm, b=1.5089(3)nm, c=2.0661(4)nm, α=90°, β=101.464(4)°,γ=90°, V=3.9219(13)nm3, Z=4 and Dc=1.374mg·m-3. The Cu(Ⅰ) is coordinated by two Patoms from triphenylphosphine and two Natoms from imidazole to form the distorted tetrahedral geometry.  相似文献   

13.
It was determined by ESR spectroscopy that the UV irradiation of toluene solutions containing Hg[P(O)(OPri)2 and the complex (2-C60)Os(CO)(PPh3)2(CNBut) produces six stable regioisomeric adducts of phosphoryl radicals with complexes, which are not demetallated under UV irradiation and do not dimerize in the absence of UV irradiation. This is caused by the addition of the phosphoryl radicals to the carbon atoms of fullerene localized near the metal-containing moiety. The addition of the phosphoryl radicals to (2-C70)Os(CO)(PPh3)2(CNBut) gives rise to the formation of nine stable regioisomeric radical adducts. A comparison of the composition of regioisomers of the radical adducts of C70 with the phosphoryl radicals, which were formed directly from C70 and from the radical adducts of 2-C70)Os(CO)(PPh3)2(CNBut) by the demetallation of the latter, revealed an orienting effect of the osmium-containing moiety on the addition of the phosphoryl radicals to the fullerene complex.Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1968–1972, September, 2004.  相似文献   

14.
室温下对苯二甲酸二丙炔醇酯分别与Co2CO8Mo2Cp2CO4和RuCo2CO11反应得到三个有机金属化合物C6H4pCO2CH2C2Hμ2Co2CO621、C6H4pCO2CH2C2H2RuCo2CO922和HC2CH2OCOC6H4pCO2CH2C2HμMo2Cp2CO43。研究发现三种金属核对端炔氢的屏蔽作用依次为RuCo2CO9>Co2CO6>Mo2CO4Cp2。化合物1的晶体衍射发现属三斜晶系空间群a=8.1392b=8.8083c=11.3433β=96.2606°V=773.443Z=1Dc=1.748g·cm-3R=0.0513wR=0.1266。  相似文献   

15.
Two new compounds CpFeMn2(CO)73-S2)2 (2) and Cp3Fe3Mn(CO)43-S2)23-S) (3) were obtained by the treatment of [CpFeMn(CO)53-S2)]2 (1) with CO at room temperature in the presence of room light. Compound 2 contains two triply bridging disulfido ligands on opposite sides of an open FeMn2 triangular cluster. EPR and temperature-dependent magnetic susceptibility measurements show that it is paramagnetic with one unpaired electron per formula equivalent. The electronic structure of 2 was established by DFT and Fenske-Hall (FH) molecular orbital calculations which show that the unpaired electron occupies a low lying antibonding orbital that is located principally on the iron atom. The cyclic voltammogram of 2 exhibits one reversible one-electron oxidation wave at +0.34 V and one irreversible one-electron reduction wave at −0.66 V vs. Ag/AgCl. Compound 3 contains three iron atoms and one manganese atom with two triply bridging disulfido ligands and one triply bridging sulfido ligand and has no unpaired electrons. The molecular structures of compounds 2 and 3 were established by single crystal X-ray diffraction analyses.  相似文献   

16.
Reaction of silver(I) halides with PPh3 in acetonitrile and then with pyridine-2-thione (pySH) chloroform (1:1:1 molar ratio) has yielded sulfur bridged dimers of general formula, [Ag2X2(μ-S-pySH)2(PPh3)2] (X = Cl, 1, Br, 2). Both these complexes have been characterized using analytical data, NMR spectroscopy and single crystal X-crystallography. The central Ag2S2 cores form parallelograms with unequal Ag–S bond distances (2.5832(8), 2.7208(11) Å) in 1 and (2.6306(4), 2.6950(7) Å) in 2, respectively. The Ag?Ag contacts of compounds 1 and 2 are 3.8425(8) and 3.8211(4) Å, respectively. The angles around Ag (in the range 87.19(2)–121.71(2)° in 1 and 87.81(2)–121.53(2)° in 2) reveal highly distorted tetrahedral geometry. There are inter dimer π–π stacking interactions between pyridyl rings (inter ring distances of 3.498 and 3.510 Å in complexes 1 and 2, respectively). The solution state 31P NMR spectroscopy has shown the existence of both monomers and dimers. The studies reveal relatively weaker intramolecular –NH?Cl hydrogen bonding in case of AgCl vis-à-vis that in CuCl which favored both a monomer and a dimer with AgCl, and only a monomer with CuCl.  相似文献   

17.
The interaction between Cp(CO)2RePt(μ-CCHPh)(PPh3)2 (1) and Fe2(CO)9 afforded the new heterometallic μ3-vinylidene cluster CpReFePt(μ3-CCHPh)(CO)6(PPh3) (2). An X-ray diffraction study shows the complex 2 possesses a trimetallic Re-Fe-Pt chain core. The bond lengths are Re-Fe 2.8221(8), Fe-Pt 2.5813(8) Å; the Re?Pt distance is 3.3523(7) Å; the bond angle Re-Fe-Pt is 76.55(3)°. The μ3-CCHPh ligand is η1-bound to the Re and Pt atoms and η2-coordinated to the Fe atom. The CC bond length is 1.412(4) Å. The Pt atom is coordinated by the PPh3 and CO groups. Complex 2 is characterized by the IR and 1H, 13C and 31P NMR spectra.  相似文献   

18.
The monoanions (η5-RC5H4)(CO)3Cr (1, R=H; 2, R=Me; 3, R=CO2Et) reacted with tetrahedral cluster FeCo23-S)(CO)9 to give single isolobal displacement products (η5-RC5H4)FeCrCo(μ3-S)(CO)8 (4, R=H; 5, R=Me; 6, R=CO2Et) in 86-89% yields, whereas monoanion (η5-RC5H4)(CO)3Cr (7, R=C(O)Me) reacted with FeCo23-S)(CO)9 to afford the expected single isolobal displacement product (η5-RC5H4)FeCrCo(μ3-S)(CO)8 (8, R=C(O)Me) in 5% yield and an unexpected square pyramidal cluster FeCo23-S)2(CO)9 (9) in 45% yield. Similarly, the dianions [η5-C5H4CH2(CH2OCH2)nCH2C5H45][(CO)3Cr]2 (10, n=1; 11, n=2; 12, n=3) reacted with two molecules of FeCo23-S)(CO)9 to produce double isolobal displacement products [η5-C5H4CH2(CH2OCH2)nCH2C5H45][FeCrCo(μ3-S)(CO)8]2 (13, n=1; 14, n=2; 15, n=3) in 32-36% yields, while treatment of dianion [η5-C5H4C(O)CH2]2[(CO)3Cr]2 (16) with two molecules of FeCo23-S)(CO)9 gave the unexpected square pyramidal cluster FeCo23-S)2(CO)9 (9) in 42% yield and the corresponding double isolobal displacement product [η5-C5H4C(O)CH2]2[FeCrCo(μ3-S)(CO)8]2 (17) in 8% yield. Products 4-6, 8, 9, 13-15 and 17 were characterized by elemental analyses, IR and 1H NMR spectroscopy, as well as for 4, 6 and 9 by X-ray diffraction techniques.  相似文献   

19.
The electrochemistry of 1,1′-bis(diphenylphosphino)ferrocene (dppf) derivatives of Ru3(CO)12 was investigated. Two known compounds [Ru3(CO)8(μ-dppf)2 (1) and Ru3(CO)10dppf (2)] and a new compound [Ru3(CO)11(μ-dppf)Ru3(CO)11 (3)] were prepared. Compound 3 was characterized spectroscopically and an X-ray crystal structure was obtained. The reductive electrochemistry of 1 and 2 showed an irreversible reduction and a follow-up oxidation, similar to Ru3(CO)12. The electrochemistry of compound 3 showed two irreversible waves and a follow-up oxidation. A trend in the reduction potential vs. the number of coordinated phosphorus atoms was noted. The oxidative electrochemistry of 1-3 showed a dppf-based chemically reversible wave, and an irreversible wave similar to that of Ru3(CO)12. Trends were also noted between the oxidation potential and the number of coordinated phosphorus atoms.  相似文献   

20.
Reaction of the metalloligand [Pt2(μ-S)2(PPh3)4] with 0.5 mol equivalents of durene-1,4-bis(mercuric acetate) [AcOHgC6Me4HgOAc] in methanol gives the polynuclear complex [{Pt2(μ-S)2(PPh3)4}2(μ-1,4-C6Me4Hg2)]2+, isolated as its and salts. Positive-ion ESI mass spectra indicate that [{Pt2(μ-S)2(PPh3)4}2(μ-1,4-C6Me4Hg2)]2+ undergoes fragmentation by successive loss of PPh3 ligands, while the ESI mass spectrum of the salt showed additional ions [Pt2(μ-S)2(PPh3)4(HgC6Me4HgPh)]+ and [Pt2(μ-S)2(PPh3)4HgPh]+ as a result of phenyl transfer from to Hg. A single-crystal X-ray structure determination on [{Pt2(μ-S)2(PPh3)4}2(μ-1,4-C6Me4Hg2)](BPh4)2 shows that the cation crystallises on a centre of symmetry, with structural features that are comparable to those of the previously characterised complex [Pt2(μ-S)2(PPh3)4HgPh]BPh4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号