首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silica gel samples with macropores were prepared from solutions of silicate and poly(vinyl alcohol) (PVA), where macropores were formed by fixing a transitional structure of phase separation. Among the silica sources tested, tetraethoxysilane (TEOS), colloidal silica and water glass, only the system with water glass shows phase separation and forms macroporous silica gel. In the system with TEOS, ethanol formed during hydrolysis of TEOS becomes good solution and stabilizes the system not to induce phase separation. In the system with colloidal silica, dense structure of silica is probably not suitable for controlling phase separation and gelation. In the system with water glass, driving force of phase separation is considered to be a repulsive interaction between solvent molecules and PVA interacting with silica surface and the solution separates into a phase rich in solvent and that rich in silica and PVA. One of the features in the water glass-PVA system is insensitivity of macropore size against compositional change in the solution, i.e. macroporous morphology in the resultant silica gel hardly changes by changing the composition ratio in the solution. This would be an advantage in the preparation of well-defined macroporous silica from water glass, whose composition varies among the product lot number, because reproducibility in macroporous morphology is ensured regardless of the lot number of the water glass.  相似文献   

2.
Abstract

The quantitative analysis of the morphological transformations in asymmetric and symmetric binary mixtures undergoing the phase separation has been reported. The general features of the bicontinuous morphology evolution have been discussed from the standpoint of the dynamic scaling hypothesis. The method for the quantitative characterization of the percolation transition by calculating the Euler characteristic has been described. It has been shown that the transformation of the bicontinuous morphology into droplets involves formation of the transient “cylindric” morphology composed of highly elongated, disconnected droplets.  相似文献   

3.
Ultralow density silica aerogels prepared with PEDS   总被引:1,自引:0,他引:1  
Xu Chao  Shen Jun  Zhou Bin 《Journal of Non》2009,355(8):492-780
This paper deals with the synthesis of ultralow density silica aerogels using polyethoxydisiloxanes (PEDS) as the precursor via sol-gel process followed by supercritical drying using ethanol solvent extraction. Ultralow density silica aerogels with 5 mg/cc of density were made for the molar ratio by this method. A remarkable reduction in the gelation time was observed by the effect of the catalyst NH4OH at room temperature. The microstructure and morphology of the ultralow density silica aerogels were characterized by the specific surface area, SBET, SEM, TEM and the pore size distribution techniques. The results show that the diameter of the silica particles is about 13 nm and the pore size of the silica aerogels is about several nm. The specific surface area of the silica aerogel is 339 m2/g and the specific surface area, pore volume and average pore diameter decrease with increasing density of the silica aerogel.  相似文献   

4.
Mesoporous silica, MSU-1 with spherical morphology was prepared using TEOS (tetraethylorthosilicate) as a silica source in the presence of an alkyl polyethylene oxide surfactant via the novel two-step process proposed by Prouzet’s group: hydrolysis of TEOS conducted in highly acidic condition at room temperature followed by condensation promoted by fluoride salt addition at 35 °C. The particles produced were characterized by XRD, SEM, and N2 adsorption/desorption isotherm. Static condensation period was found to be essential to have spherical morphology. Growth of spherical particles and evolution of porosity were studied as a function of time, temperature, NaF/TEOS, and TEOS/surfactant ratio. The MSU-1 particles prepared under different synthesis conditions were briefly tested for chromatographic separation of selected organic molecules, which demonstrates the governing influence of the pore size in MSU-1 on retention time.  相似文献   

5.
《Journal of Non》2005,351(46-48):3593-3599
Monodispersed porous silica microspheres are synthesized by the hydrolysis and condensation of tetraethoxysilane (TEOS) in a water–ethanol mixed solution containing 1-alkylamine as a template and hydrolysis catalyst. The as-prepared products were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), small angle X-ray diffraction (SAXRD), Fourier transform infrared spectroscopy (FTIR) and nitrogen adsorption, respectively. It was found that the alkyl chain length of 1-alkylamine and calcination temperature have an obvious influence on the particle size, morphology, specific surface area and pore structure of the as-prepared silica powder. The specific surface area, porosity and pore volume increased with increasing calcination temperature. Further observation showed that at 600 °C, with increasing the alkyl chain length of template from C12 to C18, the specific surface area decreased and the pore size, porosity and pore volume increased. This research may provide new insight into the control of morphology and pore structures of oxide materials.  相似文献   

6.
Preparation and characterization of ordered mesoporous silica membrane   总被引:2,自引:0,他引:2  
Hexagonal mesoporous silica (MCM-41) membranes were prepared at air-water interface by means of an interfacial silica-surfactant self-assembly process. The free-standing and oriented mesoporous silica membranes with pore size ≈2.9-3.8 nm were synthesized at room temperature in acidic media and were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) observations. Small-angle X-ray diffraction (SAXRD) patterns of membranes clearly indicated that as-synthesized membranes were typical of MCM-41 materials with a periodic hexagonal structure with the channels parallel to the surface. SEM images showed that the as-synthesized membrane was continuous and crack-free. In this paper, some novel findings are reported.  相似文献   

7.
Spherical mixed silica/titania particles are prepared from silica/titania sol by an ultrasonic vibrator. The titania content of the samples varies from pure silica to a titania mole fraction of 0.31. Narrow size distributions with most frequent particle diameter of about 1 μm are obtained. Specific surface area and pore volume, mean pore radius as well as the meso pore size distribution are influenced by titania content. The spheres are composed of both silica and titania homogeneous distributed as it is indicated by scanning electron microscopy. X-ray diffraction studies show that the particles must be considered amorphous. Structural modifications of the framework are detected. Samples with varying refractive index may be prepared.  相似文献   

8.
《Journal of Non》2007,353(11-12):1095-1100
In this work polymeric scaffolds with macropores in the shape of cylindrical channels aligned in a microporous polymer matrix were obtained. Polymer networks of different hydrophilicity were obtained with the same pore architecture: poly(hydroxyethyl methacrylate) (representative of a very hydrophilic polymer), poly(ethyl acrylate) (hydrophobic) and poly(ethyl acrylate-co-hydroxyethyl methacrylate) (a 50/50 random co-polymer with intermediate hydrophilicity) net-P(EA-co-HEMA). The macroporous structure was obtained by using poly(acrylonitrile) fibres as porogen, while the microporous matrix was produced by phase separation during polymerisation of the monomers diluted in ethanol. Morphology, equilibrium water content and water diffusion properties of the macroporous sponges are compared with the corresponding non-porous networks. The pores collapse when ethanol is evaporated from the swollen samples at room temperature. The pores of the PHEMA hydrogels reopen when the samples are immersed in liquid water, but this does not occur in the hydrophobic networks. Nevertheless, progressive substitution of ethanol by water produces PEA and co-polymer samples swollen in water with an open pore structure.  相似文献   

9.
以LaCl3、ZrClO2·8H2O为原料,无水乙醇为溶剂,采用微乳液静电纺丝法制得烧绿石型的锆酸镧纤维,并引入分相剂石蜡在纤维中构筑多孔结构.采用XRD、SEM和BET研究了纤维的结构和形貌,采用PL光谱测试了Eu3+掺杂的锆酸镧纤维的发光性能.研究表明,引入分相剂石蜡可以改善纤维中的孔结构,当石蜡用量为4 mL时所制备的锆酸镧纤维物相纯度高,其比表面积为20.77 m2·g-1,平均孔径19.3 nm,有较为丰富的孔结构且分布均匀.因此,在该纤维中掺杂Eu3+后,由于氧离子与稀土离子间的电荷跃迁,以及多孔结构光散射的作用,多孔纤维的发光强度有所提高.  相似文献   

10.
《Journal of Non》2006,352(32-35):3478-3483
In this work a SiO2 matrix with more than 50% porosity was developed and infiltrated with a pure silica sol under isostatic pressure, as a prior step to the immobilization of radioactive waste using this technique. The silica glass was prepared through the acidic leaching of phase-separated and partially-sintered sodium–borosilicate glass powder compacts. Phase separation was promoted at different stages of the sintering process to obtain different total porosity or pore size distributions, which in all cases showed macro, meso and micropores. Infiltration leads to a significant increase in weight, reflecting the initial porosity of the substrates. Porosimetry techniques (Hg porosimetry and N2 adsorption isotherms) show that the silica sol fills practically all the pores with diameters over 3 nm. Preliminary sintering tests show that the infiltration technique lowers the sintering temperature by more than 150 °C.  相似文献   

11.
《Journal of Non》2005,351(40-42):3218-3224
Sn-infused MCM-41 was prepared using a pre-mixing method and two different vapor phase methods. The sample prepared by the pre-mixing method showed lower hydrothermal stability than pure silica MCM-41. MCM-41 prepared by vapor phase treatment with SnCl4 before calcination showed higher structural stability in water and hexane at 423 K than the sample treated with SnCl4 vapor after calcination. The pore size and pore volume of MCM-41 treated with SnCl4 vapor before calcination were larger than those of pure silica MCM-41. With SnCl4 vapor treatment after calcination, the SnCl4 vapor must have reacted with silanol groups around the pore entrance and partly plugged the pore mouth of MCM-41. On the other hand, SnCl4 also penetrated into the pore wall and uniformly dispersed into the silicate network. Thus, SnCl4 vapor treatment before calcination was more effective in enhancing the structural stability in water and hexane.  相似文献   

12.
The development of macroporous biodegradable polymeric materials with three-dimensional pore structure is an important research field in tissue engineering. Structural scaffolds not only provide the cells with a mechanical support, but also perform an interactive physico-chemical role in tissue regeneration, thus it becomes important to be able to tune their mechanical properties to deliver appropriate mechanical signals to adhered cells for proper tissue regeneration. This work presents two series of poly(l-lactic acid) (PLLA) scaffolds in which we modulated the mechanical properties by systematically changing two synthesis parameters: polymer/solvent ratio and polymer-solution/porogen percentage. The peculiarity of the constructs is the presence of a double porosity: micropores generated by dioxane solvent using a freeze extraction technique and macropores produced by the leaching of macroporogen spheres. An increase in the PLLA/dioxane ratio decreases the micropores size and also influences to some extent the macropores size, due to the ability of dioxane to swell macroporogen particles. On the other hand, an increase in the amount of macroporogen increases the porosity by increasing the dimension of pore the throats connecting the macropores. Consequently, the increase in the PLLA/dioxane ratio produces a significant decrease in the permeability, and an increase in the apparent compression Young's modulus and aggregate modulus. When increasing the amount of macroporogen the permeability significantly increases and a decrease in the mechanical properties of the scaffolds is observed. Summarizing, with a systematic change of two fabrication parameters (amount of dioxane and macroporogen) the structural characteristics of the scaffolds were modulated and thereby their mechanical and transport properties were controlled.  相似文献   

13.
Macroporous (1–5 μm) monolithic silica aerogels consisting of both random but also ordered mesoporous walls have been synthesized via an acid-catalyzed sol–gel process from tetramethoxysilane (TMOS) using a triblock co-polymer (Pluronic P123) as a structure-directing agent and 1,3,5-trimethylbenzene (TMB) as a micelle-swelling reagent. Pluronic P123 was removed by Soxhlet extraction, and materials in monolithic form were obtained by extracting the pore filling solvent with liquid CO2, which eventually was taken out supercritically. Although these monoliths are more robust than base-catalyzed silica aerogels of similar density, nevertheless, the mechanical properties can be improved dramatically by letting an aliphatic di-isocyanate (Desmodur N3200) react with the silanols on the macro- and mesoporous surfaces. As it turns out, the polymer fills the mesopores and coats conformally the macropores of templated samples, so that BET surface areas decrease dramatically, from 550–620 m2 g?1 to <5 m2 g?1. By comparison, polymer nano-encapsulation of non-templated acid-catalyzed aerogels preserves a large fraction of their mesoporous surface area, and BET values decrease from 714 m2 g?1 to 109 m2 g?1. Finally, since polymer nano-encapsulation preserves the macroscopic physical dimensions of the monoliths before drying, comparative analysis of the physical dimensions against XRD data of native versus polymer nano-encapsulated samples provides evidence that upon drying macropores (micron size regime) shrink less than mesopores (nanometer size regime).  相似文献   

14.
Discrete and monodisperse submicron crystals of silicalite‐1 with a mean size of 0.3 μ m were synthesized from clear crystallization solutions. The effects of silica content, alkalinity of batch and the nature of silica source on the product yield, crystal morphology and particle size distribution were investigated. The crystal shape was sphere‐like or hexagonal twinned disks when silicic acid was the silica source. Change of silica source to sodium silicate solution leads to the formation of rounded‐edged‐hexahedron crystals. Silica content of batch does not influence crystal morphology. Alkalinity of clear crystallization solution has a strong effect both on the particle size distribution and yield of product. Increase of alkalinity caused bimodal particle size distribution and decrease of yield.  相似文献   

15.
采用正硅酸乙酯(TEOS)为硅原,以硅烷改性的埃洛石纳米管(HNTs)为增强相,利用CO2超临界干燥技术制备具有优良力学和隔热性能的HNTs/SiO2复合气凝胶.利用傅立叶红外光谱、扫描电镜、比表面积与孔径分析仪、万能试验机和导热率测量仪等手段对HNTs改性后的表面状态、HNTs/SiO2复合气凝胶的微观形貌、孔结构、力学和导热性能进行了测试分析.结果表明:改性后的HNTs均匀分散到二氧化硅气凝胶基体中,并与SiO2纳米颗粒实现良好的结合,HNTs/SiO2复合气凝胶呈三维网络结构,当HNTs含量为15wt;时,平均孔径为10.47 nm;随着HNTs含量的增加,复合气凝胶的力学性能不断增强,同时其导热系数也不断增大,当HNTs含量为15wt;时,HNTs/SiO2复合气凝胶的抗压强度为0.85 MPa,导热系数为0.024 W/mK.  相似文献   

16.
A dependable method was implemented for finding appropriate experimental conditions to attain a disaggregated trapping of aluminum phthalocyanine molecules inside translucent silica pore networks. Aluminum hydroxy-tetrasulfophthalocyanine was chosen as probe species for this task in view of its high colloidal stability and exceptional fluorescence. During early experiments, the fluorescence and stability of the trapped probe species either disappeared or were attenuated due to the interactions with the silanol groups residing on the pore walls. The stability disadvantage was overcome by chemically exchanging the surface silanol groups of silica by longer alkyl or aryl groups proceeding from organo-substituted alkoxides. The interactions between these groups and the aluminum probe induced its aggregation, degradation or the contraction or expansion of the cavities lodging these molecules. Although the red fluorescence of the probe molecule disappears when it was physically trapped in organo-modified silica, the results here presented revealed the possibility of adjusting the shape, pore size, specific surface area, and internal polarity of the pore cavities through the use of organo-substituted alkoxides and templating species, such as phthalocyanines. Hybrid systems generated this way can become important for nanotechnological applications in catalysis, optics, medicine, and gas sensoring.  相似文献   

17.
Electroactive silica mesopores have been synthesized by encapsulating different loadings of polyaniline chains into a silica network through sol-gel reactions of TEOS in the presence of polyaniline latex with D-glucose. It should be noted that the electroactive silica mesopores at higher polyaniline loading was found to reveal higher surface areas, larger pore volume, and slightly larger pore diameters as compared to that of neat non-electroactive silica mesopores.  相似文献   

18.
The incorporation of an additive during sol-gel synthesis reduces shinkage during ambient drying. The following additives have been studied: 3-(2-aminoethylamino)propyltrimethoxysilane (EDAS), 3-aminopropyltriethoxysilane (AES) and 3-(2-aminoethylamino)propyltriethoxysilane (EDAES) and the main silica precursors were tetraethylorthosilicate (TEOS) and tetrapropylorthosilicate (TPOS). When the additive contains methoxy groups (EDAS), it acts as a nucleation agent of the silica particles and exactly the same properties (pore volume, specific surface area, particle and aggregate size) are obtained whether the main reagent is TEOS or TPOS. The nucleation mechanism is based on the difference in reactivity between additive and main reagent. In case of nucleation by the additive, the nucleation agent fixes the properties whatever the main silica precursor is. When both the additive and the main reagent contain ethoxy groups (series AES-TEOS and EDAES-TEOS), there is no nucleation mechanism by the additive, and the silica particle size remains nearly constant. With less reactive main reagent (series AES-TPOS and EDAES-TPOS), pore volumes up to 17 cm3/g have been obtained with pore sizes up to nearly 10 μm and very big particles (∼100 nm). The absence of nucleation by the additive for the couples AES-TPOS and EDAES-TPOS could be due to the fact that the difference in reactivity between ethoxy groups and propoxy groups is not sufficient to initiate the nucleation mechanism by the additive. In the absence of nucleation by the additive, the main reagent plays a role: highly porous materials with very large pores are prepared with TPOS.  相似文献   

19.
We propose an innovative strategy to obtain crack-free gels by using a surfactant as a template for the silica pores. We use a neutral surfactant – n-octylamine – which weakly interacts by hydrogen bonding with the silica precursor. This allows it to be removed by simple drying in ambient air. We investigate the effect of the surfactant in simple inorganic silica obtained from tetraethoxysilane (TEOS) and an organic–inorganic hybrid xerogel, containing TEOS and polydimethylsiloxane (PDMS), as precursors. Although both the syntheses promote the formation of a crack-free uniform mesoporous silica gel, the hybrid gel network exhibits a larger pore size than the gel containing exclusively the silica from TEOS.  相似文献   

20.
This work demonstrates the synthesis of hydrophilic and hydrophobic high surface area silica aerogel beads with a large pore volume. Wet gel silica beads were modified and heat-treated under atmospheric pressure after modification of the surface by trimethychlorosilane (TMCS). The effects of heat treatment on the physical (hydrophobicity) and textural properties (specific surface area, pore volume, and pore size) of silica aerogel beads were investigated. The results indicated that hydrophobicity of the silica aerogel beads can be maintained up to 400 °C. The hydrophobicity of the silica aerogel beads decreased with increasing temperature in the range of 200-500 °C, and the beads became completely hydrophilic after heat treatment at 500 °C. The specific surface area, cumulative pore volume, and pore size of the silica aerogel beads increased with increasing temperature. Heating the TMCS modified bead gel at 400 °C for 1 h resulted in silica aerogel beads with high surface area (769 m2/g), and large cumulative pore volume (3.10 cm3/g). The effects of heat treatment on the physical and textural properties of silica aerogel beads were investigated by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), thermogravimetric and differential analysis (TG-DTA), Fourier-transform infrared spectroscopy (FT-IR), and Brunauer, Emmett and Teller (BET) and BJH nitrogen gas adsorption and desorption methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号