首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Schiff base compound, N,N′-bis(trifluoromethylbenzylidene)ethylenediamine (C18H14F6N2) (1), CF3C6H4CHNCH2CH2NCHC6H4CF3 has been synthesized by adding a solution of ethylenediammine (en), 0.1 mmol in chloroform to 4-(trifluoromethyl)-benzaldehyde, CF3C6H4CHO (0.2 mmol) and the product was crystallized in ethanol with the mp, 109.2 °C and 75% yield. The crystal structure was investigated by a single-crystal X-ray diffraction study at 150 K. The compound crystallizes in monoclinic space group, P21/c with a = 9.295(3), b = 5.976(5), c = 15.204(9) Å and α = 90°, β = 96.56(5)° and γ = 90°. The crystal structure is stabilized by intermolecular CH · · · F hydrogen bonds. The asymmetric unit contains only one-half of the molecule related to the center of symmetry coinciding with C(1)-C(1′) and as a whole, the title molecule is in the staggered conformation. The phenyl rings and the CN imine bonds are co-planar. The infrared spectrum showed a sharp peak at 1640 cm−1 which is typical of the conjugated CN stretching and strong peaks at 800-1400 cm−1 regions are due to the C-C and C-H stretching modes. Electronic absorption spectra exhibits strong absorption in the UV region (240 nm wavelength) which have been ascribed to , and electronic transitions. The 1H NMR spectra showed three distinct peaks at 2.5, 7.8 and 8.5 ppm which are assigned based on the splitting of resonance signals and are clearly confirmed by the X-ray molecular structure. The aromatic protons appear at about 7.8 ppm and the imine protons at 8.5 ppm. The sharp singlet at about 3.95 ppm is assigned to the CH2-CH2 protons. Mass spectra of the titled compound showed the molecular ion peak at m/e 372 (M+), and fragments at m/e 353 (M-F), 342 (M-2F), 200 (M-CF3C6H4CHN), 186 (M-CF3C6H4CHNCH2).  相似文献   

2.
Three novel Cu(II)-pyrazine-2,3-dicarboxylate complexes with 1,3-propanediamine (pen), [Cu2(μ-pzdc)2(pen)2] · 2H2O (1), N,N,N,N′-tetramethylethylenediamine (tmen), {[Cu(μ-pzdc)(tmen)] · H2O}n(2), and 2,2′-bipyridine (bipy), {[Cu(μ-pzdc)(bipy)]·H2O}n(3) have been synthesized and characterized by means of elemental and thermal analyses, magnetic susceptibilities, IR and UV/vis spectroscopic studies. The molecular structures of dinuclear (1) and polynuclear (2 and 3) complexes have been determined by the single crystal X-ray diffraction technique. The pyrazine-2,3-dicarboxylate acts as a bridging ligand through oxygen atom of carboxylate group and N atom of pyrazine ring and one oxygen atom of neighboring carboxylate. It links the Cu(II) ions to generate a distorted square pyramidal geometry forming a one-dimensional (1D) chain. Adjacent chains of 1 and 2 are then mutually linked via hydrogen bonding interactions, which are further assembled to form a two and three-dimensional network, respectively. The chains of complex 3 are further constructed to form three-dimensional framework by hydrogen bonding, C–H?π and ring?ring stacking interactions. In the complexes, Cu(II) ions have distorted square pyramidal geometry. Thermal analyses properties and thermal decomposition mechanism of complexes have been investigated by using thermal analyses techniques (TG, DTG and DTA).  相似文献   

3.
The intrachain and interchain hydrogen bonding of poly(N-isopropylacrylamide) (PNIPA) and intermolecular hydrogen bonding between PNIPA chains and the solvent molecules in the mixed solvent of methanol and water have been quantitatively investigated by using Fourier transform infrared (FTIR) spectroscopy at 25 °C. In this spectroscopic system with curve fitting program, we found that in the C-H stretching region, both the N-isopropyl group and the backbone underwent conformational change upon the solvent composition. An analysis of the amide I band suggested that the amide groups of PNIPA were mainly involved in intermolecular hydrogen bonding with water molecules, and the polymer chains were flexible and disordered in the mixed solvent when the methanol volume fraction (χv) was lower than 15%. While χv was in the range of 15-65%, about 30% of these intermolecular hydrogen bonding between the polymer and water were replaced by intrachain and interchain hydrogen bonding, consequently, PNIPA shrinked as aggregates. If χv was above 65%, the interchain hydrogen bonding became predominant due to the solubility characteristics of amphiphilic methanol, and the PNIPA system was homogeneous solution again. We believe that the reentrant transition is related to the weaker interaction between PNIPA molecules and methanol-water complexes, (H2O)m(CH3OH)n (m/n = 5/1, 5/2, 5/3, 5/4, 5/5) as compared to that between PNIPA and free water or free methanol.  相似文献   

4.
[Cu(H2L)(PPh3)2]NO3 · 0.5H2O (2) and [Ag(H2L)(PPh3)2]NO3 · 0.5H2O (3) complexes of a new flexible thioamide ligand; N,N′-ethane-1,2-bis(4-methoxyphenyl)carbothioamide H2L (1) have been synthesized using PPh3 as a coligand. The synthesized compounds have been characterized with the help of elemental analyses, IR, 1H, 13C and 31P NMR spectroscopy. The ligand and its Cu(I) complex have been studied by single crystal X-ray crystallography. The ligand acts as a neutral S-donor and forms a nine-membered chelate ring in [Cu(H2L)(PPh3)2]NO3 · 0.5H2O. The molecular packing is stabilized by an anionic cavity formed by intermolecular hydrogen bonding between the basal plane of the complex molecule and the nitrate ions. The square shaped columnar channel has dimensions of 5.489(25) [N(11)–H(11A)?O(13)?H(21A)N(21)] × 3.693(7) [N(11)–C(11)–C(21)–N(21)] Å.  相似文献   

5.
The reaction of N9,N9′-(tri or tetramethylene)-bisadenines (Ade2Cx; x = 3 or 4) in HCl 2 M at 50 °C with MCl2 · 2H2O [M = Zn(II), Cd(II)] yields outer sphere compounds like the previously described [(H-Ade)2C3][ZnCl4] · H2O (3) and [(H-Ade)2C3]2[Cd2Cl8(H2O)2] · 4H2O (4) for Ade2C3 and the new {[(H-Ade)2C4][Cd2Cl6(H2O)2] · 2H2O}n (5) for Ade2C4. On the other hand, only in case of Zn(II) complexes by changing [HCl] to 0.1 M, the inner sphere compounds [H-(Ade)2C3(ZnCl3)] (6) and [H-(Ade)2C4(ZnCl3)] · 1.5H2O (7) are obtained. X-ray diffraction study of compound 6, which represents the first inner sphere complex with a N9,N9′-bisadenine, shows a zwitterionic form with one adenine ring protonated at N(1) while the other ring is coordinated via N(7) to a ZnCl3 moiety as in other alkyl-adenine derivatives. In addition, with Ade2C4, is also possible to obtain another inner sphere complex: [(H-Ade)2C4(ZnCl3)2] · 3H2O (8).  相似文献   

6.
Ping Du 《Tetrahedron letters》2009,50(3):316-1596
This Letter reports the evidences for intramolecular six-membered N-H···O hydrogen bonding in N-benzyl benzamides and five-membered N-H···N hydrogen bonding in N-(pyridin-2-ylmethyl) benzamide. Intramolecular six-membered N-H···X (X = O or F) hydrogen bonding in 2-methoxyl- or 2-fluorobenzamides is used to lock the amide proton from forming strong intermolecular N-H···OC hydrogen bonding. As a result, for the first time the new intramolecular hydrogen bonding patterns are observed in the crystal structures of nine amides, whereas the whole molecules give rise to a new class of three-center hydrogen bonding motif. 1H NMR study in chloroform-d also supports that this weak intramolecular hydrogen bonding pattern exists in solution.  相似文献   

7.
N,N′-bis(3,5-dichlorosalicylidene)-2-hydroxy-1,3-diamino-2-propan (C17H14Cl4N2O3) was synthesized and its crystal structure determined. It crystallizes in the monoclinic space group, C2/c, with a=29.734(8), b=4.541(1), c=14.694(2) Å, β=115.85(2), R(F2)=0.048 for 1704 independent reflections. The title compound has a twofold axis passing through the central C9 atom. The intramolecular hydrogen bond occurs between the pairs of atoms N1 and O1 [2.648(5) Å] and the hydrogen atom is essentially being bonded to the nitrogen atom. There is no intermolecular proximity between molecules. Conformations of the title compound were investigated by semi-empirical quantum mechanical AM1 calculations. The optimized geometry of the molecular structure corresponding to the non-planar conformation is the most stable conformation in the theoretical calculations. The results strongly indicate that the minimum energy conformation is primarily determined by non-bonded steric interactions.  相似文献   

8.
The compound (NpO2)2(SO4)(H2O)4 was synthesized by evaporation of a Np5+ sulfate solution. The crystal structure was determined using single crystal X-ray diffraction and refined to an R1=0.0310. (NpO2)2(SO4)(H2O)4 crystallizes in triclinic space group P-1, a=8.1102(7) Å, b=8.7506(7) Å, c=16.234(1) Å, α=90.242(2)°, β=92.855(2)°, γ=113.067(2)°, V=1058.3(2) Å3, and Z=2. The structure contains neptunyl pentagonal bipyramids that share vertices through cation-cation interactions to form a sheet or cationic net. The sheet is decorated on each side by vertex sharing with sulfate tetrahedra, and adjacent sheets are linked together through hydrogen bonding. A graphical representation of (NpO2)2(SO4)(H2O)4 was constructed to facilitate the structural comparison to similar Np5+ compounds. The prevalence of the cationic nets in neptunyl sulfate compounds related to the overall stability of the structure is also discussed.  相似文献   

9.
N-2-(3-picolyl)-N′-phenylthiourea, 3PicTuPh, monoclinic, P21/n, a=7.617(2) b=7.197(5), c=22.889(5) Å, β=94.63(4)°, V=1250.7(1) Å3 and Z=4; N-2-(4-picolyl)-N′-phenylthiourea, 4PicTuPh, triclinic, P-1, a=7.3960(5), b=7.9660(12), c=21.600(3) Å, α=86.401(4), β=84.899(8), γ=77.769(8)°, V=1237.5(3) Å3 and Z=4; N-2-(5-picolyl)-N′-phenylthiourea, 5PicTuPh, monoclinic, P21/c, a=14.201(1), b=4.905(3), c=17.689(3) Å, β=91.38(1)°, V=1231.8(7) Å3 and Z=4; N-2-(6-picolyl)-N′-phenylthiourea, 6PicTuPh, monoclinic, C2/c2, a=14.713(1), b=9.367(1), c=18.227(1) Å, β=92.88(1)°, V=2515.5(1) Å3 and Z=8 and N-2-(4,6-lutidyl)-N′-phenylthiourea, 4,6LutTuPh, monoclinic, C2/c, a=11.107(2), b=11.793(2), c=20.084(4) Å, β=96.10(3)°, V=2616(1) Å3 and Z=8. Intramolecular hydrogen bonding between N′H and the pyridyl nitrogen and intermolecular hydrogen bonding involving the thione sulfur are affected by substitution of the pyridine ring, as is the planarity of the molecule. 1H NMR studies in CDCl3 show the NH′ hydrogen resonance considerably downfield from other resonances in the spectrum for each thiourea.  相似文献   

10.
The root-mean-square amplitude of vibration of the tin atom in the bis(amido)stannylene Sn[1,8-(NiPr)2C10H6] has been determined from temperature-dependent 119Sn Mössbauer effect measurements over the range 98 < T < 225 K and compared with the Ui,j value extracted from a single crystal X-ray diffraction study. The large difference in these values (at 238 K) is associated with the flexibility in the bonding between the Sn center and chelating diamido ligand in this complex.  相似文献   

11.
The synthetic investigation of the CuII/maleamate(−1) ion (HL)/N,N′,N′′-chelate general reaction system has allowed access to compounds [Cu2(HL)2(bppy)2](ClO4)2·H2O (1·H2O), [Cu(HL)(bppy)(ClO4)] (2) and [Cu(HL)(terpy)(H2O)](ClO4) (4) (bppy = 2,6-bis(pyrazol-1-yl)pyridine, terpy = 2,2′;6′,2′′-terpyridine). In the absence of externally added hydroxides, compound [Cu2(L′)2(bppy)2](ClO4)2 (3) was obtained from MeOH solutions; L′ is the monomethyl maleate(−1) ligand which is formed in situ via the CuII-assisted HL → L′ transformation. In the case of tptz-containing (tptz = 2,4,6-tris(2-pyridyl)-1,3,5-triazine) reaction systems, the CuII-assisted hydrolysis of tptz to pyridine-2-carboxamide (L1) afforded complex [Cu(L1)2(NO3)2] (5). The crystal structures of 15 are stabilized by intermolecular hydrogen bonding and π–π stacking interactions. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the ligands.  相似文献   

12.
Hydroxy-amino-diphosphonates HO-Cn-NH2, with 2 ? n ? 11, have been successfully synthesized via the Kabachnick-Field reaction at 70 °C with high yields. These hydroxy compounds are then reacted with methacryloyl chloride to lead to novel amino-diphosphonate methacrylates MACnNP2 (with 2 ? n ? 11). These highly pure methacrylate monomers were obtained with yields higher than 75%. Radical copolymerizations of MACnNP2 (with 2 ? n ? 11) with MMA have been conducted and the r1 values (related to MACnNP2) are in the range of 1.1-1.3, and r2 values (related to MMA) about 0.8; this shows that the diphosphonate groups are statistically bonded to the methacrylic backbone.  相似文献   

13.
Hydroboration of terminal and internal alkenes with N,N′,N″-trimethyl- and N,N′,N″-triethylborazine was carried out at 50 °C in the presence of a rhodium(I) catalyst. Addition of dppb or DPEphos (1 equiv.) to RhH(CO)(PPh3)3 gave the best catalyst for hydroboration of ethylene at 50 °C, resulting in a quantitative yield of B,B′,B″-triethyl-N,N′,N″-trimethylborazine. On the other hand, a complex prepared from (t-Bu)3P (4 equiv.) and [Rh(coe)2Cl]2 gave the best yield for hydroboration of terminal or internal alkenes.  相似文献   

14.
Two types of Pd-complexes containing the new N,N′-ligands 2-[3-(4-alkyloxyphenyl)pyrazol-1-yl]pyridine (pzRpy; R = C6H4OCnH2n+1, n = 6 (hp), 10 (dp), 12 (ddp), 14 (tdp), 16 (hdp), 18 (odp)) (1-6), namely c-[Pd(Cl)2(pzRpy)] (7-10) and c-[Pd(η3-C3H5)(pzRpy)]BF4 (11-16), have been synthesised and characterised by different spectroscopic techniques. Those members of the second type containing the largest chains (R = ddp 13, tdp 14, hdp 15, odp 16) have been found to have liquid crystal properties showing smectic A mesophases. By contrast, neither the free ligands pzRpy nor their related c-[Pd(Cl)2(pzRpy)] complexes exhibited mesomorphism. The new synthesised metallomesogens are mononuclear complexes with an unsymmetrical molecular shape as deduced from the X-ray structures of c-[Pd(η3-C3H5)(pzRpy)]BF4 (R = hp, 11; dp, 12). Both compounds, which are isostructural, show a distorted square-planar environment on the palladium centres defined by the allyl and the bidentate pzRpy ligands. The crystal structure reveals that both the counteranion and the pzRpy ligand function as a source of hydrogen-bonding and intermolecular π?π contacts resulting in a 2D supramolecular assembly.  相似文献   

15.
N,N-Bis(diphenylphosphino)ethylaniline compounds, [Ph2P]2N-C6H4-C2H5, with ethyl groups at the ortho- and para-positions have been synthesized. Oxidation of the aminophosphines with hydrogen peroxide, elemental sulfur and selenium gave the corresponding oxides, sulfides and selenides [Ph2P(E)]2N-C6H4-C2H5 (E = O, S, Se). Complexes [MCl2{(Ph2P)2N-C6H4-(C2H5)}] (M = Pd, Pt) and [Cu{(Ph2P)2N-C6H4-C2H5}2]PF6 were obtained by the reaction of N,N-bis(diphenylphosphino)ethylaniline with [MCl2(COD)] (M = Pd, Pt) and [Cu(MeCN)4]PF6. The new compounds were characterized by NMR, IR spectroscopy and microanalysis. In addition, representative solid-state structures of the palladium and platinum complexes were determined using single crystal X-ray diffraction analyses.  相似文献   

16.
The syntheses and crystal structures of four new uranyl complexes with [O,N,O,N′]-type ligands are described. The reaction between uranyl nitrate hexahydrate and the phenolic ligand [(N,N-bis(2-hydroxy-3,5-dimethylbenzyl)-N′,N′-dimethylethylenediamine)], H2L1 in a 1:2 molar ratio (M to L), yields a uranyl complex with the formula [UO2(HL1)(NO3)] · CH3CN (1). In the presence of a base (triethylamine, one mole per ligand mole) with the same molar ratio, the uranyl complex [UO2(HL1)2] (2) is formed. The reaction between uranyl nitrate hexahydrate and the ligand [(N,N-bis(2-hydroxy-3,5-di-t-butylbenzyl)-N′,N′-dimethylethylenediamine)], H2L2, yields a uranyl complex with the formula [UO2(HL2)(NO3)] · 2CH3CN (3) and the ligand [N-(2-pyridylmethyl)-N,N-bis(2-hydroxy-3,5-dimethylbenzyl)amine], H2L3, in the presence of a base yields a uranyl complex with the formula [UO2(HL3)2] · 2CH3CN (4). The molecular structures of 14 were verified by X-ray crystallography. The complexes 14 are zwitter ions with a neutral net charge. Compounds 1 and 3 are rare neutral mononuclear [UO2(HLn)(NO3)] complexes with the nitrate bonded in η2-fashion to the uranyl ion. Furthermore, the ability of the ligands H2L1–H2L4 to extract the uranyl ion from water to dichloromethane, and the selectivity of extraction with ligands H2L1, H3L5 (N,N-bis(2-hydroxy-3,5-dimethylbenzyl)-3-amino-1-propanol), H2L6 · HCl (N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-1-aminobutane · HCl) and H3L7 · HCl (N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-6-amino-1-hexanol · HCl) under varied chemical conditions were studied. As a result, the most efficient and selective ligand for uranyl ion extraction proved to be H3L7 · HCl.  相似文献   

17.
Tren amine cations [(C2H4NH3)3N]3+ and zirconate or tantalate anions adopt a ternary symmetry in two hydrates, [H3tren]2·(ZrF7)2·9H2O and [H3tren]6·(ZrF7)2·(TaOF6)4·3H2O, which crystallise in R32 space group with aH = 8.871 (2) Å, cH = 38.16 (1) Å and aH = 8.758 (2) Å, cH = 30.112 (9) Å, respectively. Similar [H3tren]2·(MX7)2·H2O (M = Zr, Ta; X = F, O) sheets are found in both structures; they are separated by a water layer (Ow(2)-Ow(3)) in [H3tren]2·(ZrF7)2·9H2O. Dehydration of [H3tren]2·(ZrF7)2·9H2O starts at room temperature and ends at 90 °C to give [H3tren]2·(ZrF7)2·H2O. [H3tren]2·(ZrF7)2·H2O layers remain probably unchanged during this dehydration and the existence of one intermediate [H3tren]2·(ZrF7)2·3H2O hydrate is assumed. Ow(1) molecules are tightly hydrogen bonded with -NH3+ groups and decomposition of [H3tren]2·(ZrF7)2·H2O occurs from 210 °C to 500 °C to give successively [H3tren]2·(ZrF6)·(Zr2F12) (285 °C), an intermediate unknown phase (320 °C) and ZrF4.  相似文献   

18.
This study deals with the reduction of Fe2O3 by H2 in the temperature range of 220-680 °C. It aims to examine the rate controlling processes of Fe2O3 reduction by H2 in the widest and lowest possible temperature range. This is to be related with efforts to decrease the emission of CO2 in the atmosphere thus decreasing its green house effect.Reduction of hematite to magnetite with H2 is characterized by an apparent activation energy ‘Ea’ of 76 kJ/mol. Ea of the reduction of magnetite to iron is 88 and 39 kJ/mol for temperatures lower and higher than 420 °C, respectively. Mathematical modeling of experimental data suggests that the reaction rate is controlled by two- and three-dimensional growth of nuclei and by phase boundary reaction at temperatures lower and higher than 420 °C, respectively.Morphological study confirms the formation of compact iron layer generated during the reduction of Fe2O3 by H2 at temperatures higher than 420 °C. It also shows the absence of such layer in case of using CO. It seems that the annealing of magnetite's defects around 420 °C is responsible for the decrease of Ea.The rate of reduction of iron oxide with hydrogen is systematically higher than that obtained by CO.  相似文献   

19.
Syntheses, characterizations, electrochemistry and catalytic properties for styrene epoxidation of three manganese(III) compounds [MnIIIL1(H2O)(MeOH)](ClO4) (1) [MnIIIL1(N3)(H2O)]·dmf (2) [MnIIIL1(Cl)(H2O)] (3) derived from the Schiff base compartmental ligand N,N′-o-phenylenebis(3-ethoxysalicylaldimine) (H2L1) are reported. The three compounds are characterized by elemental analyses, IR, mass and UV–Vis spectra and conductance values. Single crystal X-ray structures of 1 and 2 have been determined. The structures of 1 and 2 show that these are mononuclear compounds having a salen type structure. In both structures, a dinuclear species is formed by bifurcated hydrogen bonding involving coordinated water molecule. The coordination of chloride in 3 is shown by conductance measurements. The compounds have also been characterized by UV–Vis and mass spectroscopic studies. Cyclic voltammetric and square wave voltammetric studies of the three compounds reveal that these undergo Mn(III)/Mn(II) reduction reversibly with the order of the ease of reduction as 3 > 2 > 1. This order has been explained proposing the composition of active species in solution. Catalytic properties for epoxidation of styrene by all the three complexes using PhIO and NaOCl as oxidant have been studied. The order of both the styrene conversion and styrene epoxidation using the three title compounds is 3 > 1 > 2. Again, it has been observed that more efficient conversion and epoxidation take place when PhIO is used as oxidant.  相似文献   

20.
The iridium complexes IrH2{C6H3-2,6-(CH2PBut2)2 (1), IrH2{C6H3-2,6-(CH2PPri2)2 (2), and IrHCl{C6H3-2,6-(OPBut2)2 (3) have been found to be highly active catalysts for the dehydrogenation of N-ethyl perhydrocarbazole at 200 °C. However, dehydrogenation to the fully unsaturated ethyl carbazole does not occur in most instances. Complex 3 is the most active catalyst and shows reasonable activity even at 150 °C. No signs of dehydrogenation were found in experiments conducted at 100 °C. This apparently reflects the thermodynamic constraints imposed by the high enthalpy of dehydrogenation of the substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号