首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aminosilanes bearing bulky substituents on nitrogen centers, [(ArNH)2SiPhMe] (Ar = 2,6-iPr2C6H3 (1), 2,4,6-Me3C6H2 (2)) and half-sandwich lithium silylamide [(2,6-Et2C6H3NLi)(2,6-Et2C6H3NH)SiPh2] (3) have been prepared and characterized by elemental analysis, IR, EI mass and NMR (1H and 29Si) spectroscopic studies. The solid state structures of 2 and 3 have been determined by single crystal X-ray diffraction studies. The molecule 2 has a C1 symmetry due to the steric crowding, and the two N-H protons are approximately trans to each other. The amido nitrogen atoms in 2 show significant deviation from trigonal-planar geometry, and as a result, the observed Si-N bonds are marginally longer than those observed in aminosilanes with planar nitrogen atoms. The molecule 3 exists as discrete dimer with an inversion center. The Li ion in 3 forms intramolecular π-complex with the neighboring aryl (2,6-Et2C6H3) group, to form a half-sandwich lithium silylamide.  相似文献   

2.
Compound [NbCp′Me4] (Cp′ = η5-C5H4SiMe3, 1) reacted with several ROH compounds (R = tBu, SiiPr3, 2,6-Me2C6H3) to give the derivatives [NbCp′Me3(OR)] (R = tBu 2a, SiiPr32b, 2,6-Me2C6H32c). The diaryloxo tantalum compound [TaCpMe2(OR)2] (Cp = η5-C5Me5, R = 2,6-Me2C6H33) was obtained by reaction of [TaCpCl2Me2] with 2 equiv of LiOR (R = 2,6-Me2C6H3). Abstraction of one methyl group from these neutral compounds 1-3 with the Lewis acids E(C6F5)3 (E = B, Al) gave the ionic derivatives [NbCp′Me2X][MeE(C6F5)3] (X = Me 4-E. X = OR; R = SiiPr35b-E, 2,6-Me2C6H35c-E. E = B, Al) and [TaCpMe(OR)2][MeE(C6F5)3] (R = 2,6-Me2C6H36-E; E = B, Al). Polymerization of MMA with the aryloxoniobium compound 2c and Al(C6F5)3 gave syndiotactic PMMA in a low yield, whereas the tetramethylniobium compound 1 and the diaryloxotantalum derivative 3 were inactive.  相似文献   

3.
Crystalline [Li{N(SiMe2OMe)C(tBu)C(H)(SiMe3)}]2 (5), [Li{N(SiMe2OMe)C(Ph)C(H)(SiMe3)}]2 (6), [C(C6H3Me2-2,5)C(H)(SiMe3)}(TMEDA)](7), [Li{N(SiMe(OMe)2)C(tBu)C(H)(SiMe3)}(THF)]2 (8), Li{N(SiMe(OMe)2)C(Ph)C(H)(SiMe3)}(TMEDA) (9) and [Li{N(SiMe2OMe)C(tBu)C(H)(SiMe2OMe)}]2 (10) were readily obtained at ambient temperature from (i) [Li{CH(SiMe3)(SiMe2OMe)}]8 (1) and an equivalent portion of RCN (R=tBu (5), Ph (6) or 2,5-Me2C6H3 (7)); (ii) [Li{CH(SiMe3)(SiMe(OMe)2)}] (2) and an equivalent portion of tBuCN (8) or PhCN (9); and (iii) [Li{CH(SiMe2OMe)2}] (3) and one equivalent of tBuCN (10). Reactions (i) and (ii) were regiospecific with SiMe3−n(OMe)n>SiMe3 in 1,3-migration from C (in 1 or 2)→N. The 1-azaallyl ligand was bound to the lithium atom as a terminally bound κ1-enamide (8 and 10), a bridging η3-1-azaallyl (6), or a bridging κ1-enamide (5). The stereochemistry about the CC bond was Z for 5, 8 and 10 and E for 7. X-ray data are provided for 5, 6, 7, 8 and 10 and multinuclear NMR spectra data in C6D6 or C6D5CD3 for each of 5-10.  相似文献   

4.
2,4,6-Triphenylpyrylium tetrafluoroborate (TPPBF4)-sensitized photoinduced electron-transfer (PET) reactions of 1,4-diaryl-2,3-dioxabicyclo[2.2.2]octanes 5 (a: Ar1 = Ar2 = p-MeOC6H4, b: Ar1 = Ar2 = p-MeC6H4, c: Ar1 = Ar2 = Ph) underwent novel fragmentation through their radical cations to give 1,4-diarylbutan-1,4-diones 6 accompanied by elimination of ethylene. On the other hand, 4-aryl-cyclohex-3-en-1-ones 7, p-substituted phenols 8, and 4-aryl-4-aryloxycyclohexanones 9 were produced through proton-catalyzed pathways when the PET reactions of 5 were performed in the absence of a certain base such as 2,6-di-tert-butylpyridine (DTBP). Particularly, the formation of 9 is consistent with the novel cationic rearrangement involving nucleophilic O-1,2-aryl shifts and C-1,4-aryl shifts.  相似文献   

5.
The addition of LiBun to a toluene solution of Ph2P(O)N(CH2Ph)CH31 and 2,6-di-tert-butyl-4-methylphenol 5 leads to the formation of the mixed dimer [(Ph2P(O)N(CH2Ph)CH3) · LiOC6H2-2,6-{C(CH3)3}2-4-CH3) · C7H8]26. The single crystal X-ray structure shows that two lithium aryloxide moieties dimerize giving rise to a Li2O2 core in which each lithium atom is additionally coordinated to a phosphinamide 1 ligand. The multinuclear magnetic resonance study (1H, 7Li, 13C, 31P) indicates that the solid-state structure is preserved in toluene solution. Complex 6 may be considered as a model for the pre-complexation step preceding the metalation of phosphinamides by an organolithium base.  相似文献   

6.
The synthesis and the characterization of some new aluminum complexes with bidentate 2-pyrazol-1-yl-ethenolate ligands are described. 2-(3,5-Disubstituted pyrazol-1-yl)-1-phenylethanones, 1-PhC(O)CH2-3,5-R2C3HN2 (1a, R = Me; 1b, R = But), were prepared by solventless reaction of 3,5-dimethyl pyrazole or 3,5-di-tert-butyl pyrazole with PhC(O)CH2Br. Reaction of 1a or 1b with (R1 = Me, Et) yielded N,O-chelate alkylaluminum complexes (2a, R = R1 = Me; 2b, R = But, R1 = Me; 2c, R = Me, R1 = Et). Compound 1a was readily lithiated with LiBun in thf or toluene to give lithiated species 3. Treatment of 3 with 0.5 equiv of MeAlCl2 or AlCl3 yielded five-coordinated aluminum complexes [XAl(OC(Ph)CH{(3,5-Me2C3HN2)-1})2] (4, X = Me; 5, X = Cl). Reaction of 5 with an equiv of LiHBEt3 generated [Al(OC(Ph)CH{(3,5-Me2C3HN2)-1})3] (6). Complex 6 was also obtained by reaction of 3 with 1/3 equiv of AlCl3. Treatment of 5 with 2 equiv of AlMe3 yielded complex 2a, whereas with an equiv of AlMe3 afforded a mixture of 2a and [Me(Cl)AlOC(Ph)CH{(3,5-Me2C3HN2)-1}] (7). Compounds 1a, 1b, 2a-2c and 4-6 were characterized by elemental analyses, NMR and IR (for 1a and 1b) spectroscopy. The structures of complexes 2a and 5 were determined by single crystal X-ray diffraction techniques. Both 2a and 5 are monomeric in the solid state. The coordination geometries of the aluminum atoms are a distorted tetrahedron for 2a or a distorted trigonal bipyramid for 5.  相似文献   

7.
8.
Yuji Takashima 《Tetrahedron》2010,66(1):197-2519
A general approach to the (S)- and (R)-isoflavans was invented, and efficiency of the method was demonstrated by the synthesis of (S)-equol ((S)-3), (R)-sativan ((R)-4), and (R)-vestitol ((R)-5). The key step is the allylic substitution of (S)-6a (Ar1=2,4-(MeO)2C6H3) and (R)-6b (Ar1=2,4-(BnO)2C6H3) with copper reagents derived from CuBr·Me2S and Ar2-MgBr (7a, Ar2=4-MeOC6H4; 7b, 2,4-(MeO)2C6H3; 7c, 2-MOMO-4-MeOC6H3), furnishing anti SN2′ products (R)-8a and (S)-8b,c with 93-97% chirality transfer in 60-75% yields. The olefinic part of the products was oxidatively cleaved and the Me and Bn groups on the Ar1 moieties was then removed. Finally, phenol bromide 9a and phenol alcohols 9b,c underwent cyclization with K2CO3 and the Mitsunobu reagent to afford (S)-3 and (R)-4 and -5, respectively.  相似文献   

9.
The synthesis and characterization of several ipso-functionalized derivatives of the bulky terphenyl group are described. These include the primary alcohol Ar′CH2OH (1), the bromo derivative Ar′CH2Br (2), and the terphenyl formate Ar′CH2OC(O)H (3). The alcohol 1 was obtained by treatment of LiAr′ with formaldehyde, and 1 was readily converted to the bromo derivative 2 using HBr. The reaction of 1 with formic acid afforded 3 in good yield. Attempts to form the Grignard derivative of 1, i.e., Ar′CH2MgBr, resulted in a head-to-tail reaction of the terphenyl benzyl units to yield an unusual coupled product 4. An approach to the avoidance of this coupling involved the synthesis of the terphenyl derivatives and , bearing methyl groups in the para positions of the central aryl ring, which could be prepared in good yield, and converted to their respective lithium salts 7 and 8 without complication . The compounds were characterized by 1H and 13C NMR spectroscopy, IR spectroscopy (1) and X-ray crystallography (2, 4, 5 and 6).  相似文献   

10.
11.
The use of the 2,6-diphenoxyphenyl ligand has facilitated the stabilisation of lithium, silane and stannane complexes. The ortho-metallation reaction between 1,3-(PhO)2C6H4 and nBuLi yields 2,6-(PhO)2C6H3Li (1); the crystallographically characterised dimer [2,6-(PhO)2C6H3Li(OEt2)]2 ([1.Et2O]2) can be obtained by the crystallisation of 1 from diethyl ether. The reaction between 1 and Me3ECl gives rise to the structurally authenticated complexes 2,6-(PhO)2C6H3EMe3 [E = Si, 2; E = Sn, 3].  相似文献   

12.
Reaction of (C5Me5)2Lu(Me)(μ-Me)Li(THF)3 (2) with excess 12-crown-4 affords the new separated ion pair complex, [Li(12-crown-4)2][(C5Me5)2LuMe2] (3), in excellent yield. This complex reacts with 2,6-diisopropylaniline and phenylacetylene to give the methyl amide complex [Li(12-crown-4)2][(C5Me5)2Lu(Me)(NH-2,6-iPr2C6H3)] (4) and the bis(acetylide) complex [Li(12-crown-4)2][(C5Me5)2Lu(C≡C-Ph)2] (5), respectively. Attempts to promote methane loss from complexes 3 and 4 to generate a lutetium methylidene or imido complex, respectively, were unsuccessful. The ability of the bis(acetylide) complex 5 to act as a π-tweezer complex was also explored. Reaction between [Li(12-crown-4)2][(C5Me5)2Lu(C≡C-Ph)2] (5) and CuSPh gave only intractable lutetium products and the copper(I) species [Li(12-crown-4)2][Cu(C≡C-Ph)2] (8). The new lutetium complexes have been characterized by elemental analysis and NMR spectroscopy. Finally, the X-ray crystal structures of (C5Me5)2Lu(Me)(μ-Me)Li(THF)3 (2), [Li(12-crown-4)2][(C5Me5)2LuMe2] (3), [Li(12-crown-4)2][(C5Me5)2Lu(Me)(NH-2,6-iPr2C6H3)] (4), [Li(12-crown-4)2][(C5Me5)2Lu(C≡C-Ph)2] (5), and [Li(12-crown-4)2][Cu(C≡C-Ph)2] (8) are also reported.  相似文献   

13.
A series of cobalt(II) compounds of the type [CoX2(α-diimine)] were synthesised by direct reaction of anhydrous CoCl2 or CoI2 and the corresponding α-diimine ligand, in CH2Cl2: [CoI2(o,o′,p-Me3C6H2-DAB)] (1), [CoI2(o,o′-iPr2C6H3-DAB)] (2), (where Ar-DAB = 1,4-bis(aryl)-2,3-dimethyl-1,4-diaza-1,3-butadiene), and [CoCl2(o,o′,p-Me3C6H2-BIAN)] (3), [CoCl2(o,o′-iPr2C6H3-BIAN)] (4), and [CoI2(o,o′-iPr2C6H3-BIAN)] (5) (where Ar-BIAN = bis(aryl)acenaphthenequinonediimine). All compounds were characterised by elemental analyses, IR, mass spectrometry, and X-ray diffraction whenever possible. The crystal structures of compounds 2-4 showed, in all cases, distorted tetrahedral geometries about the Co, built by two halogen atoms and two nitrogen atoms of the α-diimine ligand. Compounds 3 and 4, as well as [CoCl2(o,o′,p-Me3C6H2-DAB)] (1a), and [CoCl2(o,o′-iPr2C6H3-DAB)] (2a), were activated by methylaluminoxane (MAO) and tested as catalysts for ethylene polymerisation, showing low catalytic activities. Selected polyethylene (PE) samples were characterised by 1H and 13C NMR and FT-IR spectroscopies, and by differential scanning calorimetry (DSC), revealing branching microstructures (2.5-5.5%).  相似文献   

14.
Treatment of (RH2C)2C5H3N-2,6 (R=SiMe3) with BunLi followed by addition of Me3SiCl gave the tetrasilyl pyridine derivative (R2HC)2C5H3N-2,6 1 in high yield. Further lithiation of 1 with BunLi and reaction of the intermediate with PhCN led to the new lithium-1-azaallyl [Li{N(R)C(Ph)C(R)(C5H3N-2,6)(CHR2)}]22, while metallation of the previously described di-lithium compounds [Li{N(R)C(R)CH}2(C5H3-2,6)]Li(tmen)n (R=SiMe3, R=But, n=1 or R=SiMe3, R=Ph, n=2) with PdCl2(PhCN)2 yielded the novel metallacycles [Pd{{N(H)(R)C(R)CH}{N(SiMe2CH2)C(R)CH}C5H3N-2,6}] 3 (R=But) and [Pd{{N(R)C(R)CH}{N(R)(H)C(R)CH}C5H3N-2,6}2] (R=Ph) 4 in moderate to low yield. Compound 3 is unusual in being the first example of a crystallographically characterised PdNSiC heterocycle which is believed to be formed via an intramolecular CH-activation of a trimethylsilyl group by Pd(II). All four compounds were fully characterised by NMR-spectroscopy, microanalysis (not 4) and X-ray diffraction.  相似文献   

15.
The differences between the molecular structures of the PCP-pincer complex [RuCl{C6H3(CH2P(C6H5)2)2-2,6}(PPh3)] ([RuCl(PCPH)(PPh3)], 1) and its tetrakis-pentafluorophenyl substituted analogue [RuCl{C6H3(CH2P(C6F5)2)2-2,6}(PPh3)] ([RuCl(PCPF20)(PPh3)], 2) have been rationalised by performing calculations on the cations [Ru(PCPH)(PPh3)]+ (1cat) and [Ru(PCPF20)(PPh3)]+ (2cat). The molecular interactions between the chloride ligand and the axial rings, as found in 1 and 2, respectively, have been studied computationally in the model systems [(C6X5PH2)2Cl] (X = H, F). The calculations on 2cat show that in 2 it is most likely the attractive electrostatic interaction between the chloride ligand and the fluorinated phenyl rings that forces the Cipso atom to occupy an axial position rather than an equatorial one in the observed (X-ray of 2) square pyramidal arrangement. In 1, however, repulsive steric hindrance forces the PPh3 ligand to take the apical position. The applicability of the TD-DFT method for the calculation of the electronic spectra of the PCP-pincer compounds 1 and 2 has been tested. The results indicate that the excitation energies calculated for both complexes are in a reasonable agreement with the experimental absorption maxima. However, for 1, all the calculated transition energies are underestimated.  相似文献   

16.
Mesityl substituted β-diketiminato lanthanum and yttrium complexes [(BDI)Ln{N(SiRMe2)}2] (BDI = ArNC(Me)CHC(Me)NAr, Ar = 2,4,6-Me3C6H2, Ln = La, R = Me (1), H (2a); Ln = Y, R = H (2b)) can be prepared via facile amine elimination starting from [La{N(SiMe3)2}3] and [Ln{N(SiHMe2)2}3(THF)2] (Ln = Y, La), respectively. The X-ray crystal structure analysis of 1 revealed a distorted tetrahedral geometry around lanthanum with a η2-bound β-diketiminato ligand. A series of novel ethylene- and cyclohexyl-linked bis(β-diketiminato) ligands [C2H4(BDIAr)2]H2 and [Cy(BDIAr)2]H2 [Ar = Mes (=2,4,6-Me3C6H2), DEP (=2,6-Et2C6H3), DIPP (=2,6-i-Pr2C6H3)] were synthesized in a two step condensation procedure. The corresponding bis(β-diketiminato) yttrium and lanthanum complexes were obtained via amine elimination. The X-ray crystal structure analysis of the ethylene-bridged bis(β-diketiminato) complex [{C2H4(BDIMes)2}YN(SiMe3)2] (3b) and cyclohexyl-bridged complexes [{Cy(BDIMes)2}LaN(SiHMe2)2] (7) and [{Cy(BDIDEP)2}LaN(SiMe3)2] (8) revealed a distorted square pyramidal coordination geometry around the rare earth metal, in which the amido ligand occupies the apical position and the two linked β-diketiminato moieties form the basis. The geometry of the bis(β-diketiminato) ligands depends significantly on the linker unit. While complexes with an ethylene-linked ligand adopt a cisoid arrangement of the two aromatic substituents, complexes with cyclohexyl linker adopt a transoid arrangement. Either one (3b) or both (7, 8) of the β-diketiminato moieties are tilted out of the η2 coordination mode, resulting in close Ln?C contacts. The β-diketiminato and linked bis(β-diketiminato) complexes were moderately active in the copolymerization of cyclohexene oxide with CO2. A maximum of 92% carbonate linkages were obtained using the ethylene-bridged bis(β-diketiminato) complex [{C2H4(BDIMes)2}LaN(SiHMe2)2] (4).  相似文献   

17.
The synthesis of tricyclic compounds on functionalized cyclam core is described. The addition of four methyl acrylate molecules and consecutive condensation of this derivative with ethylenediamine resulted in formation of 1,4,8,11-tetrakis(2-(N-(2-aminoethyl)carbamoyl)ethyl)-1,4,8,11-tetraazacyclotetradecane (3). Compound 3 was the substrate for further condensation with dialdehydes: iso-phthaldialdehyde and 2,6-pyridinedicarbaldehyde, resulting in spontaneous macrocycle ring closure to give tricyclic derivatives: 1,11:4,8-bis(benzene-1,3-diyl-bis(2-(N-(2-formidoylethylene)carbamoyl)ethylene))-1,4,8,11-tetraazacyclotetradecane (4) in the reaction of 3 with iso-phthaldialdehyde and three isomers: 1,4:8,11-bis(pyridine-2,6-diyl-bis(2-(N-(2-formidoylethylene)carbamoyl)ethylene))-1,4,8,11-tetraazacyclotetradecane (5A), 1,11:4,8-bis(pyridine-2,6-diyl-bis(2-(N-(2-formidoylethylene)carbamoyl)ethylene))-1,4,8,11-tetraazacyclotetradecane (5B), and 1,8:4,11-bis(pyridine-2,6-diyl-bis(2-(N-(2-formidoylethylene)carbamoyl)ethylene))-1,4,8,11-tetraazacyclotetradecane (5C) when 2,6-pyridinedicarbaldehyde was used. The compounds 4, 5B, and 5C were identified crystallographically. The isolated 5A converted in solution into the mixture of 5B and 5C as monitored by the 1H NMR spectroscopy. The tricycle 5 is able to accept two manganese(II) metal ions by reacting with manganese(II) dichloride with simultaneous diprotonation of 5. Structure of the resulting Mn2(5BH2)Cl6·(CH3OH)2(H2O)2 was determined crystallographically.  相似文献   

18.
The reaction of sodium cyanopentacarbonylmetalates Na[M(CO)5(CN)] (M=Cr; Mo; W) with cationic Fe(II) complexes [Cp(CO)(L)Fe(thf)][O3SCF3], [L=PPh3 (1a), CN-Benzyl (1b), CN-2,6-Me2C6H3 (1c); CN-But (1d), P(OMe)3 (1e), P(Me)2Ph (1f)] in acetonitrile solution, yielded the metathesis products [Cp(CO)(L)Fe(NCCH3)][NCM(CO)5] [M=W, L=PPh3 (2a), CN-Benzyl (2b), CN-2,6-Me2C6H3 (2c); CN-But (2d), P(OMe)3 (2e), P(Me)2Ph (2f); M=Cr, L=(PPh3) (3a), CN-2,6-Me2C6H3 (3c); M=Mo, L=(PPh3) (4a), CN-2,6-Me2C6H3 (4c)]. The ionic nature of such complexes was suggested by conductivity measurements and their main structural features were determined by X-ray diffraction studies. Well-resolved signals relative to the [M(CO)5(CN)] moieties could be distinguished only when 13C NMR experiments were performed at low temperature (from −30 to −50 °C), as in the case of [Cp(CO)(PPh3)Fe(NCCH3)][NCW(CO)5] (2a) and [Cp(CO)(Benzyl-NC)Fe(NCCH3)][NCW(CO)5] (2b). When the same reaction was carried out in dichloromethane solution, neutral cyanide-bridged dinuclear complexes [Cp(CO)(L)FeNCM(CO)5] [M=W, L=PPh3 (5a), CN-Benzyl (5b); M=Cr, L=(PPh3) (6a), CN-2,6-Me2C6H3 (6c), CO (6g); M=Mo, L=CN-2,6-Me2C6H3 (7c), CO (7g)] were obtained and characterized by infrared and NMR spectroscopy. In all cases, the room temperature 13C NMR measurements showed no broadening of cyano pentacarbonyl signals and, relative to tungsten complexes [Cp(CO)(PPh3)FeNCW(CO)5] (5a) and [Cp(CO)(CN-Benzyl)FeNCW(CO)5] (5b), the presence of 183W satellites of the 13CN resonances (JCW ∼ 95 Hz) at room temperature confirmed the formation of stable neutral species. The main 13C NMR spectroscopic properties of the latter compounds were compared to those of the linkage isomers [Cp(CO)(PPh3)FeCNW(CO)5] (8a) and [Cp(CO)(CN-Benzyl)FeCNW(CO)5] (8b). The characterization of the isomeric couples 5a-8a and 5b-8b was completed by the analyses of their main IR spectroscopic properties. The crystal structures determined for 2a, 5a, 8a and 8b allowed to investigate the geometrical and electronic differences between such complexes. Finally, the study was completed by extended Hückel calculations of the charge distribution among the relevant atoms for complexes 2a, 5a and 8a.  相似文献   

19.
The low barrier for interconversion of chiral conformations of the dynamically chiral 2,2′-biphenyl ligand NMe2C6H4C6H4PCy2 is raised upon coordination. The individual enantiomers of the planar chiral arene-tethered complex Ru(η61- NMe2C6H4C6H4PCy2)Cl2 (1), however, do not undergo racemization readily. A second source of chirality, such as a chiral diamine, can be included by conversion of 1 into a dicationic analogue [Ru(η61-NMe2C6H4C6H4PCy2)((1S,2S)-DPEN)](SbF6)2 (2), which is a catalyst precursor for the hydrogenation of aryl ketones. Two epimers of 2, RAr,S,S and SAr,S,S, are formed when starting from racemic 1; this 1:1 mixture of diastereomers catalyzed the asymmetric hydrogenation of acetophenone. The enantiomerically pure diastereomers were obtained from resolved 1 and used separately to catalyze the reaction. Each diastereomer showed different selectivity, with SAr,S,S-2 being the more selective (61% ee for the hydrogenation of acetophenone). Our studies suggest that ruthenium hydride formation is accompanied by a decrease in hapticity of the η6-arene and probable detachment of the ring from the metal. Nevertheless, the original conformational chirality of the biphenyl ligand appears to be at least partially retained during the catalysis.  相似文献   

20.
A reaction of anhydrous yttrium chloride with an equimolar amount of lithium amidinateamidopyridinate obtained in situ by metallation of N,N’-bis(2,6-dimethylphenyl)-N-{6-[(2,6-dimethylphenyl)amino]pyridin-2-yl}acetimidamide ((2,6-Me2C6H3)NH(2,6-C6H3N)N(2,6-Me2C6H3)C(Me)=N(2,6-Me2C6H3), L1H) (1) with n-butyllithium in THF at–70 °C was used to synthesize the yttrium dichloride complex (L1)YCl2(THF)2 (2). The lutetium bis(alkyl) complex, namely, N’-(2,6-diisopropylphenyl)-N-(2,6-dimethylphenyl-N-{6-[(2,6-dimethylphenyl)amido]pyridin-2-yl}acetimidoamidinatebis(trimethylsilylmethyl)lutetium (4), was obtained by the reaction of N’-(2,6-diisopropylphenyl)-N-(2,6-dimethylphenyl)-N-(6-((2,6dimethylphenyl)amino)pyridin-2-yl)acetimidamide ((2,6-Me2C6H3)NH(2,6-C6H3N)N-(2,6-Me2C6H3)C(Me)=N(2,6-Pr 2 i C6H3), L2H (3)) with an equimolar amount of Lu(CH2SiMe3)3(THF)2. Complex 4 was found to be very stable and did not show indications of C—H-activation and other kinds of disintegration in benzene or toluene solution even upon prolonged heating at 60 °C. The reaction of complex 4 with an equimolar amount of 2,6-diisopropylaniline in toluene solution at room temperature led to the formation of the lutetium alkyl-anilide complex (L2)Lu(CH2SiMe3)(NH-2,6-Pr 2 i C6H3) (5). A three-component system 4—AlBu 3 i —[X][B(C6F5)4] ([X] = [Ph3C], [PhNHMe2], the molar ratio of 1: 10: 1) was found to catalyze polymerization of isoprene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号