首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The existence of the charge transfer excited triplet state [Mo5+-O-] produced by UV-irradiation of Mo/SiO2 catalysts, and its reactivity are evidenced by experiments of photoluminescence, photoinduced metathesis, and photoreduction of CO. Mo5+ ions can be produced separately by thermal activation and O- ions by further adsorption of N2O on those Mo5+ ions. The latter of which are adsorbed on Mo6+ ions are found to be more reactive than O2- of [Mo6+ =O2-] bond. They are able either to add a molecule such as CO or C2H4, or to abstract hydrogen from H2, CH4 or trans-dicyanoethylene, or a CN group form tetracyanoethylene (TCNE). The Mo5+ ions are able to coordinate gas phase ligands when their coordination sphere possesses vacant sites. This is the case for tetracoordinated Mo5+ 4c ions arising from reduction of tetrahedral Mo6+ ions (Eq. (7)). These Mo5+ 4c ions are similar to those produced by UV-irradiaiion (Eq. (2)). In addition, if the adsorbed molecule has a sufficiently large electron affinity, such as TCNE or O2, an electron transfer can occur (Eq. (9) and (17)). The [Mo5+-O-] bond obtained by thermal activation is more difficult to evidence than that obtained with UV-activation because it is not detectable by EPR. However, the EPR results obtained at low temperature show that the O- ions adsorbed on Mo/SiO2 catalysts as well as the [Mo5+-O-] excited triplet state obtained by UV-irradiation of 1Mo6+=O2] interact with methanol (Eq. (16)). They are consistent with the mechanism of methanol oxidation occurring at high temperature (Eq. (4)).  相似文献   

2.
Solution equilibrium studies on the Cu(II)–polyamine–histidine ternary systems (polyamine: ethylenediamine (en), diethylenetriamine (dien), N,N,N′,N″,N″-pentamethyldiethylenetriamine (Me5dien)) have been performed by pH-potentiometry, UV–Vis spectrophotometry and EPR methods. The obtained results suggest the formation of the mixed-ligand complexes with [Cu(A)(His)]+ stoichiometry in all studied systems. Additionally, in the systems with dien and Me5dien protonated [Cu(A)(H–His)]2+ species also exists in acid solution. Our spectroscopic results indicate the tetragonal geometry for the [Cu(en)(His)]+, the geometry slightly deviated from square pyramidal for the [Cu(dien)(His)]+ and strongly deviated from square pyramidal towards trigonal bipyramidal for the [Cu(Me5dien)(His)]+ species. The coordination modes in these mixed-ligand complexes are discussed.  相似文献   

3.
A Pd2dba3/P(i-BuNCH2CH2)3N catalyzed one-pot synthesis of unsymmetrically substituted trans-4-N,N-diarylaminostilbenes and both symmetrically and unsymmetrically substituted N,N-diarylaminostyrene derivatives is reported. The procedure involves two or more palladium catalyzed sequential coupling reactions (an amination and an inter-molecular Heck reaction) in one-pot using the same catalyst system with two different aryl halides, including aryl chlorides and hetero aryl halides as the coupling partners.  相似文献   

4.
The valence stability of tin in its complexes with 1-hydroxyethylene-diphosphonate (HEDP) and with N,N′,N′-trimethylenephosphonate-polyethyleneimine (PEI-MP) was investigated. With particular interest in the possible interconversion between Sn2+ and Sn4+, the complexes were monitored with the aid of 31P NMR spectroscopy. The extent of complex formation with both ligands was evaluated for systems with tin in their respective oxidation states. The Sn2+-complexes underwent initial, but limited oxidation upon preparation, and beyond which were rather stable, irrespective of pH or time. Both Sn2+- and Sn4+-complexes were found to exist in solution without change. Oxidation of Sn2+ was achieved by addition of hydrogen-peroxide and was partially reversed by the addition of glutathione (GSH). The amount of H2O2 needed for complete oxidation of the Sn2+- into Sn4+-complexes was determined for both ligands, as well as the time taken for that oxidation.  相似文献   

5.
A family of aluminum-methyl complexes supported by tetradentate phenoxy-amine ligands has been prepared and employed in the ring-opening polymerization of rac-lactide; the ligands include N,N-bis(3,5-dimethyl-2-hydroxybenyl)-N′,N′-dimethyl-1,2-diaminoethane (L1), N,N-bis(3,5-diisopropyl-2-hydroxybenyl)-N′,N′-dimethyl-1,2-diaminoethane (L2) and N,N-bis(3,5-dichloro-2-hydroxybenyl)-N′,N′-dimethyl-1,2-diaminoethane (L3). Polymerizations of rac-lactide were carried out by treatment of the aluminum-methyl complexes with PhCH2OH and rac-lactide at 70 °C, affording well-controlled formation of polylactide (PLA) and a moderate isotactic bias for initiators bearing L1 and L2; the chloro-substituted ligand L3 afforded largely atactic PLA.  相似文献   

6.
Four multitopic ligands, N,N′-bis[(S)-prolyl)phenylenediamine, N,N′-bis{[(S)-pyrrolidin-2-yl]methyl}phenylenediamine, N,N′-bis[(S)-N-benzylprolyl]phenylenediamine, N,N′-bis{[(S)-N-benzyl-pyrrolidin-2-yl]methyl}phenylenediamine, were synthesised and their co-ordination properties with Rh(I) and Ir(I) studied. The complexes were prepared by the reaction of [MCl(cod)]2 with AgPF6 and further treatment with the ligand. All ligands form one to one [ML] species with the above metal ions. The structures of these complexes were elucidated by analytical and spectroscopic data (elemental analysis, mass spectroscopy, IR, 1H- and 13C-NMR). Complexes show excellent activities and enantioselectivities up to 30% for the hydrogenation of prochiral olefins under mild reaction conditions.  相似文献   

7.
The syntheses and crystal structures of four new uranyl complexes with [O,N,O,N′]-type ligands are described. The reaction between uranyl nitrate hexahydrate and the phenolic ligand [(N,N-bis(2-hydroxy-3,5-dimethylbenzyl)-N′,N′-dimethylethylenediamine)], H2L1 in a 1:2 molar ratio (M to L), yields a uranyl complex with the formula [UO2(HL1)(NO3)] · CH3CN (1). In the presence of a base (triethylamine, one mole per ligand mole) with the same molar ratio, the uranyl complex [UO2(HL1)2] (2) is formed. The reaction between uranyl nitrate hexahydrate and the ligand [(N,N-bis(2-hydroxy-3,5-di-t-butylbenzyl)-N′,N′-dimethylethylenediamine)], H2L2, yields a uranyl complex with the formula [UO2(HL2)(NO3)] · 2CH3CN (3) and the ligand [N-(2-pyridylmethyl)-N,N-bis(2-hydroxy-3,5-dimethylbenzyl)amine], H2L3, in the presence of a base yields a uranyl complex with the formula [UO2(HL3)2] · 2CH3CN (4). The molecular structures of 14 were verified by X-ray crystallography. The complexes 14 are zwitter ions with a neutral net charge. Compounds 1 and 3 are rare neutral mononuclear [UO2(HLn)(NO3)] complexes with the nitrate bonded in η2-fashion to the uranyl ion. Furthermore, the ability of the ligands H2L1–H2L4 to extract the uranyl ion from water to dichloromethane, and the selectivity of extraction with ligands H2L1, H3L5 (N,N-bis(2-hydroxy-3,5-dimethylbenzyl)-3-amino-1-propanol), H2L6 · HCl (N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-1-aminobutane · HCl) and H3L7 · HCl (N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-6-amino-1-hexanol · HCl) under varied chemical conditions were studied. As a result, the most efficient and selective ligand for uranyl ion extraction proved to be H3L7 · HCl.  相似文献   

8.
Transition metal complexes with ligands based on dipyrido[3,2-a:2′,3′-c]phenazine (dppz) have been synthesized. As metal fragments the [Ru(bpy)2]+, Re(CO)3Cl and the [Cu(PPh3)2]+ moieties have been used. The complexes containing amino- or bis(bromomethyl) substituted dppz ligands can be used for fullerene-based donor-bridge-acceptor dyads. The electronic absorption spectra of these complexes and of the dppz ligands were investigated. The dppz ligands show strong absorptions in the 300 and 390 nm region. An additional absorption band in the visible region (∼440 nm) is observed for the amino-substituted dppz-ligands. Ruthenium complexes exhibited broad absorption bands at 350-500 nm arising from intraligand-based transitions and the MLCT transition. MLCT transitions of the Re(I) and Cu(I) complexes are observed as shoulders of the stronger ligand-based absorption band tailing out to 400-500 nm. The electrochemically active complexes and ligands were studied by cyclic voltammetry and square-wave voltammetry. All ligands show one first reversible one-electron reduction located at the phenazine portion. These reductions are shifted to more positive redox potentials upon complexation. Oxidation potentials for reversible processes could be determined for the Ru2+/Ru3+ couple. For rhenium(I) and copper(I) complexes one irreversible oxidation process is observed.  相似文献   

9.
New trans-disubstituted macrocyclic ligands, 1,8-[N,N-bis(3-formyl-12-hydroxy-5-methyl)benzyl]-5,12-dioxo-1,4,8,11-tetraazacyclotetradecane (L1), 1,8-[N,N-bis(3-formyl-12-hydroxy-5-bromo)benzyl]-5,12-dioxo-1,4,8,11-tetraazacyclotetradecane (L2), N,N-bis[1,8-dibenzoyl]-5,12-dioxo-1,4,8,11-tetraazacyclotetradecane (L3), N,N-bis[1,8-(2-nitrobenzoyl)]-5,12-dioxo-1,4,8,11-tetraazacyclotetradecane (L4), and N,N-bis[1,8-(4-nitrobenzoyl)]-5,12-dioxo-1,4,8,11-tetraazacyclotetradecane (L5) were synthesized. The ligands were characterized by elemental analysis, FT IR, 1H NMR and mass spectrometry studies. The crystal structure of L1 is also reported. The copper(II) and nickel(II) complexes of these ligands were prepared and characterized by elemental analysis, FT IR, UV-Vis and mass spectral studies. The cyclic voltammogram of the complexes of ligand L1-3 show one-electron quasi-reversible reduction wave in the region −0.65 to −1.13 V, whereas that of L4 and L5 show two quasi-reversible reduction peaks. Nickel(II) complexes show one electron quasi-reversible oxidation wave at a positive potential in the range +0.95 to +1.06 V. The ESR spectra of the mononuclear copper(II) complexes show four lines, characteristic of square-planar geometry with nuclear hyperfine spin 3/2. All copper(II) complexes show a normal room temperature magnetic moment value μeff 1.70-1.73 BM which is close to the spin only value of 1.73 BM. Kinetic studies on the oxidation of pyrocatechol to o-quinone using the copper(II) complexes as catalysts and hydrolysis of 4-nitrophenylphosphate using the copper(II) and nickel(II) complexes as catalysts were carried out. The ligands and their complexes were also screened for antimicrobial activity against Gram-positive, Gram-negative bacteria and human pathogenic fungi.  相似文献   

10.
Solution equilibrium studies on Cu(II)-, Ni(II)- and Zn(II)-N-Me-β-Alaninehydroxamic acid (N-Me-β-Alaha), -N-Me-α-alaninehydroxamic acid (N-Me-α-Alaha), -Imidazole-4-carbohydroxamic acid (Im-4-Cha), -N-Me-imidazole-4-carbohydroxamic acid (N-Me-Im-4-Cha) and -Imidazole-4-acetohydroxamic acid (Im-4-Aha) systems have been performed by pH-potentiometry, UV–Vis spectrophotometry, EPR, CD, ESI-MS and 1H NMR methods. According to the results: (i) the amino-N atoms are more basic in N-Me-α-Alaha and N-Me-β-Alaha than the hydroxamate function, but the trend is just the opposite between the imidazole-N(3) and hydroxamate. (ii) The metal ion anchor is always the hydroxamate part in the amino acid derivatives, while it is always the imidazole-N(3) in the studied imidazolehydroxamic acids. (iii) The three studied N-Me derivatives do not form metallacrowns. Only hydroxamate type chelate is formed with N-Me-β-Alaha, but with N-Me-α-Alaha a new type of coordination mode (via amino-N and hydroxamate-O) also exists. N-Me-Im-4-Cha also forms a dinuclear complex, [M2L3], with Cu(II) and Ni(II) (but not with Zn(II)). In this complex, one of the three ligands might bridge the two metal ions (five-membered hydroxamate-(O,O) plus five-membered (Nim, Ocarb) bridging bis-chelating mode), while each of the additional two ligands binds to one metal. (iv) The two studied N–H derivatives, having dissociable proton on the hydroxamic-N, are able to form metallacrown species. A pentanuclear complex, [M5L4H−4], is exclusively formed above pH 4 between Cu(II) and Im-4-Aha. Interestingly, this 12-metallacrown-4 type complex, although together with various mononuclear binding isomers, appears also with Ni(II) and Zn(II). Unfortunately, the complexes of Im-4-Cha are not soluble in water at physiological pH at all.  相似文献   

11.
Cobalt(II), nickel(II), copper(II) and zinc(II) complexes of 2-thiophenecarbonyl hydrazone of 3-isatin (H2L1) and 2-furoic hydrazones of 3-isatin (H2L2) and 3-(N-methyl)isatin (HL3), with general composition [M(L)2] · nX, where X is ethanol or/and water, were synthesised and characterised. The molecular structure of HL3 showed that it crystallised in the keto form, which is also the more abundant tautomer for the three hydrazone ligands in solution. The three ligands behave as κ2-O,N donors in the cobalt(II) and zinc(II) complexes. The X-ray crystal structure of pseudotetrahedral [Zn(HL1)2] · 1.75MeOH confirmed the O,N coordination mode of the two monodeprotonated ligands in their keto forms. Secondary interactions of zinc ions with the O atoms of each isatin keto residue provoke a substantial distortion towards a square pyramidal form. The interaction of the isatin keto residues is stronger in the three nickel(II) complexes where the three acylhydrazones can be considered as κ3-O,N,O donors.  相似文献   

12.
Complexes of enaminones; 4-N,N-diethylamine-pent-3-ene-2-one [HL1], 4-N,N-di n-propylamine-pent-3-ene-2-one [HL2] and 4-N,N-dicyclohexylamine-pent-3-ene-2-one [HL3] with Fe(II) and Zn(II) ions were prepared by reacting the equimolar ethanolic solutions of the ligands (HL1, HL2 and HL3) with ethanolic metal solutions. The complexes formed, were characterized by infrared, ultraviolet and atomic absorption spectroscopy. Ligands and their metal complexes were tested against Escherichia coli and Staphylococcus aureus bacteria to assess their antibacterial action using disc diffusion method. Ligands were completely inactive against bacteria whereas the complex Zn (HL1) has significant action on both bacteria, indicating that it has a good potential as bactericide. Other complexes have normal antiseptic character.  相似文献   

13.
Complexes of general formula, [M(isa-sme)2] · n(solvate) [M = Ni2+, Cu2+, Zn2+, Cd2+; isa-sme = monoanionic form of the Schiff base formed by condensation of isatin with S-methyldithiocarbazate; n = 1 or 1.5; solvate = MeCN, DMSO, MeOH or H2O] have been synthesized and characterized by a variety of physicochemical techniques. An X-ray crystallographic structure determination of the [Ni(isa-sme)2] · MeCN complex reveals a six-coordinate, distorted octahedral geometry. The two uninegatively charged, tridentate, Schiff base ligands are coordinated to the nickel(II) ion meridionally via the amide O-atoms, the azomethine N-atoms and the thiolate S-atoms. By contrast, the crystal structure of [Zn(isa-sme)2] · MeOH shows a four-coordinate distorted tetrahedral geometry. The two dithiocarbazate ligands are coordinated as NS bidentate chelates with the amide O-atom not coordinated. The structure of the copper(II) complex [Cu(isa-sme)2] · DMSO is complicated and comprises two different complexes in the asymmetric unit, one four- and the other five-coordinate. The four-coordinate copper(II) has a distorted (flattened) tetrahedral geometry as seen in the Zn(II) analogue whereas the five-coordinate copper(II) has a distorted square-pyramidal geometry with one ligand coordinated to the copper(II) ion as a tridentate (NSO) ligand and the other coordinated as a bidentate NS chelate. EPR spectroscopy indicates that in solution only one form is present, that being a distorted tetrahedral complex.  相似文献   

14.
One electron oxidation of safranine T by specific oxidizing radicals such as Cl-2, Tl2+, Tl(OH)+, N.3, Br-2 etc. has been studied using the nanosecond pulse radiolysis technique. Reaction of free Br. atom has also been investigated at neutral pH. The semioxidized safranine species formed by these reactions have been shown to exist in two conjugate acid-base forms with pKa=4.0. Their spectral and kinetic parameters have been evaluated. Using N.3/N-3 and I-2/2I- as reference couples, the one electron reduction potential of the semioxidized safranine has been determined to be 1.13±0.02 V vs NHE. The absorption spectra, second order decay rate constant and the pKa of the OH-reaction product revealed features quite different from that of the semioxidized species suggesting that the mode of OH reaction is not via electron abstraction.  相似文献   

15.
Reactions of (1R,2R)-N1,N2-bis(pyridinylmethyl)cyclohexane-1,2-diamine derivatives, (1R,2R)-2-bpcd and (1R,2R)-3-bpcd [(1R,2R)-2-bpcd = (1R,2R)-N1,N2-bis(pyridin-2-ylmethyl)cyclohexane-1,2-diamine, (1R,2R)-3-bpcd = (1R,2R)-N1,N2-bis(pyridin-3-ylmethyl)cyclohexane-1,2-diamine], with CdI2 in an analogous way led to the formation of a chiral discrete mononuclear complex and a chiral one-dimensional polymeric chain, respectively, which may be attributed to the positional isomerism of the ligands. The chiral organic ligands and complexes display luminescent properties indicating that they may have a potential application as optical materials. Powder second-harmonic generation (SHG) efficiency measurement shows that the SHG efficiency of the complexes is approximately 0.3 and 0.45 times that of KDP, respectively.  相似文献   

16.
New complexes [NiII(pbpaen)](ClO4)2 (1) and [CoIII(pbpaen)](ClO4)3 (2) (pbpaen = N′-(pyridin-2-ylmethyl)-N,N-bis {2-[(pyridin-2-ylmethyl)amino]ethyl}ethane-1,2-diamine) have been synthesized and characterized by IR and UV–Vis spectroscopies. An X-ray structure of the nickel(II) complex shows that [Ni(pbpaen)](ClO4)2 (1) crystallizes in the monoclinic space group P21/c. The cation [Ni(pbpaen)]2+ is pseudo-octahedral with one of the three pyridyl nitrogen atom uncoordinated. The crystal lattice of this complex is stabilized by intra and intermolecular hydrogen bonding systems, giving one-dimensional sheets like arrays. All attempts to obtain nickel or cobalt complexes with protonated forms of the ligand resulted in isolation of only [CoIII(bpaen)](ClO4)3 (3) compound in which the tripod pbpaen ligand has lost one of the three pyridylmethyl groups, procuring then bpaen ligand {bpaen = N,N-bis{2-[(pyridin-2-ylmethyl)amino]ethyl}ethane-1,2-diamine}. The X-ray crystal structure reveals that the compound 3 crystallizes in the orthorhombic space group Pna2 with the Co3+ ion having a distorted-octahedral environment. These two ligands with strong-field N donor stabilise the +3 oxidation state of the Co center.  相似文献   

17.
(S,S)-N,N′ -Bis(aminoacyl)ethane- and (S,S)-N,N′ -bis(aminoacyl)propanediamines (AA-NN-2 and AA-NN-3, respectively, AA = alanine, phenylalanine, valine) were synthesized as the dihydrochlorides, and their complexes with Cu(II) studied potentiometrically. Since these ligands in the presence of Cu(II) are able to perform chiral resolution of D ,L -dansylamino acids in HPLC (reversed phase), in a certain pH range (6.5–8.5), it is important to know the equilibria existing between ligands and copper in aqueous solution. For AA-NN-2, four species, CuLH3+, CuL2+, Cu2L2H, and CuLH?2, were detected, whereas for AA-NN-3, only CuLH3+, CuL2+, and CuLH?2 were found. The aim is to find out which complexes may be involved in the recognition process.  相似文献   

18.
A novel series of N2O2 diazadioxa macrocyclic complexes [MLCl2] (M=Co2+, Ni2+ and Cu2+) have been synthesized with newly derived biologically active ligands (LI-LIV). These ligands were synthesized by the condensation of 1, 6-bis(2-formylphenyl)hexane and 3-subtituted-4-amino-5-hydrazino-1, 2, 4-triazole. The mode of bonding and overall geometry of the complexes have been inferred through IR, EPR, electronic spectral studies, conductivity, magnetic, thermal and electrochemical studies. All the complexes are soluble in DMF and DMSO and are non-electrolytes. All these complexes have been screened for their antibacterial (Escherichia coli, Staphylococus aureus, Salmonella typhi, Pseudomonas aeruginosa) and antifungal activities (Aspergillus niger, Aspergillus flavus and Cladosporium) by the MIC method. The DNA cleavage study was done by Agarose gel electrophoresis.  相似文献   

19.
The crystal structures of N-o-hydroxybenzimido-meso-tetraphenylporphyrinatozinc(II) toluene solvate [Zn(N-NCO(o-OH)C6H4-tpp)·C6H5CH3; 4·C6H5CH3], N-o-hydroxybenzimido-meso-tetraphenylporphyrinatonickel(II) chloroform solvate [Ni(N-NCO(o-OH)C6H4-tpp)·0.6CHCl3; 5·0.6 CHCl3], N-o-hydroxybenzimido-meso-tetraphenylporphyrinatocopper(II) toluene solvate [Cu(N-NCO(o-OH)C6H4-tpp)·C6H5CH3; 6·C6H5CH3] and N-o-oxido-benzimido-meso-tetraphenylporphyrinato(-κ4,N1,N2,N3,N5,κO2) manganese (III) methylene chloride·methanol solvate [Mn(N-NCO(o-O)C6H4-tpp)·CH2Cl2·MeOH; 8·CH2Cl2·MeOH] were established. The coordination sphere around Zn2+ ion in 4·C6H5CH3, (or Ni2+ ion in 5·0.6 CHCl3 or Cu2+ ion in 6·C6H5CH3) is a distorted square planar (DSP) whereas for Mn3+ in 8·CH2Cl2·MeOH, it is a distorted trigonal bipyramid (DTBP) with O(1), N(1) and N(3) lying in the equatorial plane for 8·CH2Cl2·MeOH. The g value of 8.27 measured from the parallel polarization of X-band EPR spectra at 293 K is consistent with the high-spin mononuclear manganese(III) (S = 2) in 8. The magnitude of axial (D) zero-field splitting (ZFS) for the mononuclear Mn(III) in 8 was determined approximately as 3.0 cm?1 by the paramagnetic susceptibility measurements and conventional EPR spectroscopy.  相似文献   

20.
Three dimethylgallium complexes of type Me2GaL [L = 2-methoxylphenylmethyleneiminophenolato (1), N-(4-N,N′-dimethylamino)phenylmethyleneiminophenolato (2), N-(2-naphthyl)methyleneiminophenolato (3)] have been synthesized by the reaction of trimethylgallium with appropriate N-arylmethyleneiminophenol. The complexes obtained have been characterized by elemental analysis, 1H, 13C{1H} NMR, IR and mass spectroscopy, respectively. The solid structure of 2 has been determined by X-ray single crystal analysis. The gallium atom was bonded by an oxygen atom and coordinated by an imine nitrogen atom forming one five-membered ring. The stable dimmer was formed by the coordination of bridging oxygen atom of phenolate to another gallium atom. The photoluminescence of complexes 1-3 were studied. The maximum emission wavelengths of 1-3 are between 305 and 320 nm upon radiation by UV light. The electroluminescent properties of diodes using 1-3 as emitting material were measured. The blue/green electroluminescence has been observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号