首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Air-stable, mononuclear orthometalated ruthenium(III) 2-(arylazo)phenolate complexes of the general composition [RuX(AsPh3)2(L)] (X = Cl or Br; L = CNO donor of the 2-(arylazo)phenolate ligands) have been synthesized and characterized by IR, UV-vis, and EPR as well as by elemental analysis. One of the complexes [RuBr(AsPh3)2(azo-OMe)] was structurally characterized by X-ray analysis and was found to be an efficient catalyst for the transfer hydrogenation of ketones with excellent conversion in the presence of isopropanol at 80 °C in 1 h.  相似文献   

2.
Twelve ruthenium(III) complexes bearing amine-bis(phenolate) tripodal ligands of general formula [Ru(L1–L3)(X)(EPh3)2] (where L1–L3 are dianionic tridentate chelator) have been synthesized by the reaction of ruthenium(III) precursors [RuX3(EPh3)3] (where E = P, X = Cl; E = As, X = Cl or Br) and [RuBr3(PPh3)2(CH3OH)] with the tripodal tridentate ligands H2L1, H2L2 and H2L3 in benzene in 1:1 molar ratio. The newly synthesized complexes have been characterized by analytical (elemental and magnetic susceptibility) and spectral methods. The complexes are one electron paramagnetic (low-spin, d5) in nature. The EPR spectra of the powdered samples at RT and the liquid samples at LNT shows the presence of three different ‘g’ values (gx ≠ gy ≠ gz) indicate a rhombic distortion around the ruthenium ion. The redox potentials indicate that all the complexes undergo one electron transfer process. The catalytic activity of one of the complexes [Ru(pcr-chx)Br(AsPh3)2] was examined in the transfer hydrogenation of ketones and was found to be efficient with conversion up to 99% in the presence of isopropanol/KOH.  相似文献   

3.
Treatment of [RuCl3(PPh3)3] with 1-(arylazo)naphthol ligands in benzene under reflux afford air-stable new organoruthenium(III) complexes with general composition [Ru(an-R)Cl(PPh3)2] (where, R = H, Cl, CH3, OCH3, OC2H5) in fairly good yield. The 1-(arylazo)naphtholate ligands behave as dianionic tridentate C, N, O donors and coordinates to ruthenium through phenolic oxygen, azo nitrogen and ortho carbon generate two five-membered chelate rings. The composition of the complexes have been established by analytical (elemental analysis and magnetic susceptibility measurement) and spectral (FT-IR, UV-Vis, EPR) methods. The complexes are paramagnetic (low-spin, d5) in nature and in dichloromethane solution show intense d-d transitions and ligand-to-metal charge transfer (LMCT) transitions in the visible region. The solution EPR spectrum of complex [Ru(an-CH3)Cl(PPh3)2] (3) in dichloromethane at 77 K shows rhombic distortion around the ruthenium ion with three different ‘g’ values (gx ≠ gy ≠ gz). The single crystal structure of the complex [Ru(an-OCH3)Cl(PPh3)2] (4) has been characterised by X-ray crystallography, indicates the presence of a distorted octahedral geometry in these complexes. All the complexes exhibit one quasi-reversible oxidative response in the range 0.60-0.79 V (RuIV/RuIII) and two quasi-reversible reductive responses (RuIII/RuII; RuII/RuI) within the range −0.50 to −0.62 V and −0.93 to −0.98 V respectively. The formal potential of all the couples correlate linearly with the Hammett constant of the para substituent in arylazo fragment of the 1-(arylazo)naphtholate ligand. Further, the catalytic efficiency of one of the ruthenium complexes (4) was determined for the transfer hydrogenation of ketones with an excellent yield up to 99% in the presence of isopropanol/KOH.  相似文献   

4.
Ortho-metallated ruthenium(III) complexes with Schiff bases (H2L) derived from one mole equivalent each of benzaldehyde and acid hydrazides are described. Reactions of H2L with [Ru(PPh3)3Cl2] in presence of NEt3 (1:1:2 mole ratio) under aerobic conditions in methanol provide the complexes having the general formula trans-[Ru(L)(PPh3)2Cl] in 55-60% yields. The complexes have been characterized with the help of elemental analysis, magnetic susceptibility, electrochemical and various spectroscopic (infrared, electronic and EPR) measurements. The +3 oxidation state of the metal centre in these complexes is confirmed by their one-electron paramagnetic nature. Molecular structures of two representative complexes have been determined by X-ray crystallography. In each complex, the metal ion is in a distorted octahedral CNOClP2 coordination sphere. The dianionic C,N,O-donor ligand (L2−) together with the chloride form a CNOCl square-plane and the P-atoms of the two PPh3 molecules occupy the two axial sites. The electronic spectra of the complexes in dichloromethane solutions display several absorptions due to ligand-to-metal charge transfer and ligand centred transitions. In dichloromethane solutions, the complexes display a ruthenium(III) → ruthenium(IV) oxidation in the potential range 0.35-0.98 V (vs. Ag/AgCl). All the complexes in frozen (110 K) dichloromethane-toluene (1:1) solutions display rhombic EPR spectra.  相似文献   

5.
New hexa-coordinated Ru(III) complexes of the type [Ru(H2Pzdc)(EPh3)3X2] have been synthesized by reacting 3,5-pyrazole dicarboxylic acid (H3Pzdc) with the appropriate starting complexes [RuX3(EPh3)3] (where X = Cl or Br; E = P or As). The ligand behaves as a bidentate monobasic chelate. All the complexes have been characterized by analytical and spectroscopic (IR, electronic and EPR) data. Single-crystal X-ray analysis of the complex [Ru(H2Pzdc)(PPh3)2Cl2]·C6H6·C2H5OH revealed that the coordination environment around the ruthenium center consists of an NOP2Cl2 octahedron. The planar ligand occupies the equatorial position along with two chlorine atoms, while the triphenylphosphine groups occupy the axial positions. The electrochemical behavior of the new complexes was studied using cyclic voltammetry. The new mononuclear ruthenium complexes are capable of acting as catalysts for the oxidation of alcohols.  相似文献   

6.
A series of new hexa-coordinated ruthenium(II) carbonyl complexes of the type [RuCl(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3, AsPh3 or Py; L = 2′-hydroxychalcones) have been prepared by reacting [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py) with 2′-hydroxychalcones in benzene under reflux. The new complexes have been characterized by analytical and spectral (IR, electronic, 1H, 31P and 13C NMR) data. Based on the above data, an octahedral structure has been assigned for all the complexes. The new complexes exhibit catalytic activity for the oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N-methylmorpholine-N-oxide (NMO) as co-oxidant and also found efficient catalyst in the transfer hydrogenation of ketones. The antifungal properties of the complexes have also been examined and compared with standard Bavistin.  相似文献   

7.
Four new mononuclear complexes, [Ni(L1)(NCS)2] (1), [Ni(L2)(NCS)2] (2), [Co(L1)(N3)2]ClO4 (3), and [Co(L2)(N3)2]ClO4 (4), where L1 and L2 are N,N′-bis[(pyridin-2-yl)methylidene]butane-1,4-diamine and N,N′-bis[(pyridin-2-yl)benzylidene]butane-1,4-diamine, respectively, have been prepared. The syntheses have been achieved by reaction of the respective metal perchlorate with the tetradentate Schiff bases, L1 and L2, in presence of thiocyanate (for 1 and 2) or azide (for 3 and 4). The complexes have been characterized by microanalytical, spectroscopic, single crystal X-ray diffraction and other physicochemical studies. Structural studies reveal that 14 are distorted octahedral geometries. The antibacterial activity of all the complexes and their constituent Schiff bases have been tested against Gram-positive and Gram-negative bacteria.  相似文献   

8.
Air-stable monomeric rhodium(III) NCN pincer complexes were synthesized via direct C-H bond activation of 1,3-bis(2-pyridyloxy)benzene, 3,5-bis(2-pyridyloxy)toluene and 3,5-bis(2-pyridyloxy)anisole with RhCl3·3H2O in ethanol under reflux. The synthesized complexes were characterized by elemental analysis and 1H NMR. One of the complexes was structurally characterized by X-ray analysis. An investigation into the catalytic activity of the complex 1a as catalyst for transfer hydrogenation of ketones to alcohols at 82 °C in the presence of iPrOH/KOH was undertaken with the conversions up to 99%.  相似文献   

9.
A new Schiff base, 3-(benzothiazol-2-yliminomethyl)-naphthalen-2-ol, has been synthesized and characterized by elemental analysis, Fourier transform infrared spectroscopy (FT-IR), UV–vis, nuclear magnetic resonance, and single-crystal X-ray diffraction. Ruthenium(III) complexes of the Schiff base were synthesized and characterized by analytical and spectroscopic (FT-IR, UV–vis, and electron paramagnetic resonance) data as well as magnetic susceptibility measurements. DNA-binding properties of the ligand and its ruthenium(III) complexes have been investigated by electronic absorption spectroscopy. The three ruthenium(III) complexes were tested for DNA cleavage. Further in vitro study of the cytotoxity of the ligand and the complexes on human cervical cancer cell line and human laryngeal epithelial carcinoma cell line were carried out.  相似文献   

10.
Reactions of [RuHCl(CO)(B)(EPh3)2] (B = EPh3 or Py; E = P or As) and chalcones in benzene with equal molar ratio led to the formation of new complexes of the type [RuCl(CO)(EPh3)(B)(L1?4)] (B = PPh3, AsPh3 or Py; E = P or As; L = chalcone). The new complexes have been characterized by analytical and spectroscopic (IR-, electronic, 1H-, 31P-, and 13C-NMR) data. Based on these data, an octahedral structure has been assigned for all the complexes. The chalcones are monobasic bidentate (O,O) donors and coordinate to ruthenium via phenolic and carbonyl oxygen. The new complexes exhibit efficient catalytic activity for the transfer hydrogenation of carbonyl compounds. Antifungal properties of the ligands and their complexes have been examined and compared with standard Bavistin.  相似文献   

11.
Reaction of 2-hydroxy-1-naphthaldehydebenzoylhydrazone(napbhH2) with manganese(II) acetate tetrahydrate and manganese(III) acetate dihydrate in methanol followed by addition of methanolic KOH in molar ratio (2 : 1 : 10) results in [Mn(IV)(napbh)2] and [Mn(III)(napbh)(OH)(H2O)], respectively. Activated ruthenium(III) chloride reacts with napbhH2 in methanolic medium yielding [Ru(III)(napbhH)Cl(H2O)]Cl. Replacement of aquo ligand by heterocyclic nitrogen donor in this complex has been observed when the reaction is carried out in presence of pyridine(py), 3-picoline(3-pic) or 4-picoline(4-pic). The molar conductance values in DMF (N,N-dimethyl formamide) of these complexes suggest non-electrolytic and 1 : 1 electrolytic nature for manganese and ruthenium complexes, respectively. Magnetic moment values of manganese complexes suggest Mn(III) and Mn(IV), however, ruthenium complexes are paramagnetic with one unpaired electron suggesting Ru(III). Electronic spectral studies suggest six coordinate metal ions in these complexes. IR spectra reveal that napbhH2 coordinates in enol-form and keto-form to manganese and ruthenium metal ions in its complexes, respectively. ESR studies of the complexes are also reported.  相似文献   

12.
The reactions of [RuHCl(CO)(B)(EPh(3))(2)] (B=EPh(3) or pyridine; E=P or As) and 2'-hydroxychalcones in 1:2 ratio led to the formation of [Ru(CO)(B)(L)(2)] (B=PPh(3), AsPh(3) or Py; L=2'-hydroxychalcones). The new complexes have been characterized by analytical and spectral (IR, electronic and (1)H NMR) data. They have been assigned an octahedral structure. The new complexes were found to catalyze the oxidation of alcohols to aldehydes using N-methylmorpholine-N-oxide as co-oxidant. All the new complexes were found to be active against bacteria such as E. coli, Salmonella typhi and fungi Aspergillus niger. The activity was compared with standard Streptomycin or Bavistin.  相似文献   

13.
The mononuclear cobalt(III) complex [Co(L)2]Cl ·?H2O (1) (where L is H2N(CH2)2N=CC6H3(OMe)(O?)) has been prepared and characterized by IR, UV-Vis spectroscopy, conductivity measurements, elemental analysis, TGA, cyclic voltammetry and an X-ray structure determination. The cobalt(III) coordination sphere in [Co(L)2] is cis-CoN4O2 with the NNO ligands. Electrochemical studies of 1 using cyclic voltammetry indicate an irreversible cathodic peak (E pc, ca ?0.60 V) corresponding to reduction of cobalt(III) to cobalt(II).  相似文献   

14.
A new tetradentate tetraaza ligand was prepared via Schiff-base condensation of 3,4-diaminotoluene with 2,3-butandione monoxime in aqueous solution. This ligand coordinates cobalt(III) through nitrogen donors in equatorial positions with loss of one oxime proton with concomitant formation of an intramolecular hydrogen bond. A series of cobalt(III) complexes, [CoLX2] (X?=?Cl?, Br?, or I?), [SCNCoLBr], [CNCoLBr], [BF2CoLBr], and [YCoLBr]ClO4 (Y?=?pyridine, thiophene, triphenylphosphine, or n-pentylamine), was synthesized. The compounds were characterized based on the elemental analysis (C, H, N), electrical conductance, magnetic moment measurements, and spectral studies (IR, 1H NMR, and UV-Vis). Thermal stabilities of representative complexes were examined by using thermal analysis (TGA and DTG). The reported complexes are d6 low-spin diamagnetic and a distorted octahedral environment was proposed. All complexes undergo tetragonal distortion as evidenced by splitting of 1T1g and 1T2g levels of the pseudo-octahedral symmetry. The ligand field parameters such as DqE , DqA , and the tetragonal splitting Dt have been computed and correlated with the nature of the coordinated axial ligands. The reported cobalt(III) complexes exhibit promising catalytic activity toward aerobic oxidation of ascorbic acid to the corresponding dehydroascorbic acid. The oxidase catalytic activity is linked to both the tetragonal splitting parameter Dt and the Lewis-acidity of cobalt(III) created by the nature of the coordinated axial ligands. The probable mechanistic implications of the catalytic oxidation reactions are discussed.  相似文献   

15.
《Polyhedron》1999,18(5):631-640
A group of six ruthenium(III) complexes of type [Ru(acac)(L)2]where acac=acetylacetonate anion and L=2-(arylazo)-4-methylphenolate anion or 1-(phenylazo)-2-naphtholate anion have been synthesized and characterized Structural characterization of a representative complex where L=1-(phenylazo)-2-naphtholate anionshows that the azophenolate ligands are coordinated as NO-donor ligands forming six-membered chelate rings The complexes are paramagnetic (low-spin d5S=1/2) and show rhombic ESR spectra in 1:1 dichloromethane–toluene solution at 77 K In carbon tetrachloride solution these complexes show intense LMCT transitions in the visible region together with weak ligand-field transitions in the near-IR region All the complexes display two cyclic voltammetric responses a ruthenium(III)–ruthenium(IV) oxidation in the range of 083 to 103 V vs SCE and a ruthenium(III)–ruthenium(II) reduction in the range of −024 to −052 V vs SCE Formal potentials of both the couples correlate linearly with the Hammett constant of the para substituent in the arylazo fragment of the 2-(arylazo)-4-methylphenolate ligand The ruthenimn(IV) and ruthenium(II) congeners of the [RuIII(acac)(L)2] complexes have been generated by chemical or electrochemical methods and they have been characterized by electronic spectroscopy and cyclic voltammetry.  相似文献   

16.
Unsymmetrically-substituted ruthenium(II) Schiff-base complexes, [Ru(CO)(B)(L x )] [B = PPh3, AsPh3 or Py; L x = dianion of tetradentate unsymmetrical Schiff-base ligand; x = 4–7, L4 = salen-o-hyac, L5 = valen-o-hyac, L6 = salphen-o-hyac, L7 = valen-2-hacn], were prepared and characterized by analytical, IR, electronic, and 1H NMR spectral studies. The new complexes were tested for their catalytic activity towards the oxidation of benzylalcohol to benzaldehyde.  相似文献   

17.
This article describes the preparation and characterization of cis-[Ru(bipy)2L](ClO4)2 and trans-[RuCl2L2]?·?Cl (bipy?=?2,2′-bipyridyl and L?=?ortho-phenylenediamine (o-phd), 2-aminopyridine (2-apy) and 2-aminobenzonitrile (2-abn), and examines the catalytic oxidations of benzyl alcohol, benzohydrol and pipronyl alcohol by cis-[Ru(bipy)2 (o-phd)](ClO4)2 and trans-[RuCl2(o-phd)2]?·?Cl complexes at room temperature and in the presence of N-methyl morpholine-N-oxide (NMO) as co-oxidant.  相似文献   

18.
The complex [Ru(CO)2(triphos-κ2P)Cl2] (1) underwent decarbonylation in dichloromethane solution under air over a period of about two weeks to afford the chelated monocarbonyl complex [Ru(CO)(triphos-κ3P)Cl2] (2). The Single Crystal X-ray structure of 2 showed a slightly distorted metal centred complex. The catalytic activity of one of the complexes [Ru(CO)(triphos-κ3P)Cl2] (2) was examined in the transfer hydrogenation of aromatic carbonyl compounds and was found to be efficient with conversion up to 100% in the presence of isopropanol/NaOH.  相似文献   

19.
A series of ruthenium(III) complexes [RuX(EPh3)2L] (where X = Cl or Br; E = P or As; L = deprotonated dibasic tridentate ligand) were prepared by the reaction of [RuX3(EPh3)3] with Schiff bases (H2L1–H2L4). The ligands were prepared by the condensation of N-4 phenyl/methyl semicarbazide with o-vanillin/o-hydroxy acetophenone. The complexes were characterized by elemental, physico-chemical, and electrochemical methods. Catalytic studies of these complexes for the oxidation of alcohols and aryl–aryl coupling were carried out. Antimicrobial experiments were also carried out.  相似文献   

20.
Diamagnetic ruthenium(II) complexes of the type [Ru(L)(CO)(B)(EPh3)] [where E = As, B = AsPh3; E = P, B = PPh3, py (or) pip and L = dibasic tridentate ligands dehydroacetic acid semicarbazone (abbreviated as dhasc) or dehydroacetic acid phenyl thiosemicarbazone (abbreviated as dhaptsc)] were synthesized from the reaction of [RuHCl(CO)(B)(EPh3)2] (where E = As, B = AsPh3; E = P, B = PPh3, py (or) pip) with different tridentate chelating ligands derived from dehydroacetic acid with semicarbazide or phenylthiosemicarbazide. All the complexes have been characterized by elemental analysis, FT-IR, UV–Vis and 1H NMR spectral methods. The coordination mode of the ligands and the geometry of the complexes were confirmed by single crystal X-ray crystallography of one of the complexes [Ru(dhaptsc)(CO)(PPh3)2] (5). All the complexes are redox active and are monitored by cyclic voltammetric technique. Further, the catalytic efficiency of one of the ruthenium complexes (5) was determined in the case of oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N-methylmorpholine-N-oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号