共查询到20条相似文献,搜索用时 15 毫秒
1.
Paula Barbazán Inmaculada Prieto Ezequiel M. Vázquez-López 《Journal of organometallic chemistry》2009,694(19):3102-2156
The rhenium(I) carbonyl halide (X = Cl and Br) complexes, [ReX(CO)3{H2(py)L2}] (1a, 1b) and [ReX(CO)3{H2(Fc)L2}] (2a, 2b), of the ligands derived from 2-acetylpyridine and ferrocenyl carbaldehyde derivatives of 2-hydroxybenzoic acid hydrazide [H2(py)L2 and H2(Fc)L2, respectively] have been prepared in good yield. The complexes have been characterized by elemental analysis, MS, IR, UV-Vis and 1H NMR spectroscopic methods and their structures have been elucidated by X-ray diffraction. The ligand forms a five-membered chelate ring but in H2(py)L2 it is Npyridine,N′-bidentate while it is O,N-bidentate in H2(Fc)L2 complexes.Reaction of complex 1a with copper(II) nitrate yields the unexpected aqua complex [Re{H(py)L2}(H2O)(CO)3] (3) where the ligand is monodeprotonated but maintains the coordination mode observed in 1a, as shown by X-ray diffraction. However, reaction of 1b with glycine yields a conformational polymorph of the original compound, 1b′. The X-ray study shows that the orientation of the O-H phenol group against the carbonyl amide group is the main difference. 相似文献
2.
Ara Núñez-MontenegroRosa Carballo José M. Hermida-RamónEzequiel M. Vázquez-López 《Polyhedron》2011,30(12):2146-2156
N-thioamide thiosemicarbazone derived from 4-(methylthio)benzaldehyde (R = H, HL1; R = Me, HL2 and R = Ph, HL3) have been prepared and their reaction with fac-[ReX(CO)3(CH3CN)2] (X = Br, Cl) in methanol gave the adducts [ReX(CO)3(HLn)] (1a X = Cl, n = 1; 1a′ X = Br, n = 1; 1b X = Cl, n = 2; 1b′ X = Br, n = 2; 1c X = Cl, n = 3; 1c′ X = Br, n = 3) in good yield.All the compounds have been characterized by elemental analysis, mass spectrometry (ESI), IR and 1H NMR spectroscopic methods. Moreover, the structures of HL2, HL3, HL3·(CH3)2SO and 1b′·H2O were also elucidated by X-ray diffraction. In 1b′, the rhenium atom is coordinated by the sulphur and the azomethine nitrogen atoms (κS,N3) forming a five-membered chelate ring, as well as three carbonyl and bromide ligands. The resulting coordination polyhedron can be described as a distorted octahedron.The structure of the dimers is based on rhenium(I) thiosemicarbazonates [Re2(L1)2(CO)6] (2a), [Re2(L2)2(CO)6] (2b) and [Re2(L3)2(CO)6] (2c) as determined by X-ray studies. Methods of synthesis were optimized to obtain amounts of these thiosemicarbazonate complexes. In these compounds the dimer structures are achieved by Re-S-Re bridges, where S is the thiolate sulphur from a κS,N3-bidentate thiosemicarbazonate ligand.Some single crystals isolated in the synthesis of 2b contain [Re(L4)(L2)(CO)3] (3b) where L4 (=2-methylamine-5-(para-methylsulfanephenyl)-1,3,4-thiadiazole) is originated in a cyclization process of the thiosemicarbazone. Furthermore, the rhenium atom is coordinate by the sulphur and the thioamidic nitrogen of the thiosemicarbazonate (κS,N2) affording a four-membered chelate ring. 相似文献
3.
Martin Pota Jan ermk Jan Sýkora Pavel Vojtíek Ivana Císaov Radek Fajgar 《Journal of organometallic chemistry》2008,693(11):1997-2003
A series of novel diphosphinoazine rhodium amido carbonyl complexes [{R2PCHC(But)–NNC(But)CH2PR2}Rh(CO)] (R = Ph, Pri, c-C6H11, But) was prepared by deprotonation of cationic diphosphinoazine rhodium amino carbonyl complexes. The complexes were characterized by NMR as were also their precursors. The crystal structures of two cationic and one neutral deprotonated complex were determined by X-ray diffraction showing the complexes to be essentially planar with mutual trans arrangement of phosphine groups and nitrogens trans to carbonyl ligands. Measurement of valence vibration frequencies of carbonyl groups in the complexes allowed to estimate the electron density on the rhodium centre. The ene-hydrazone ligand backbone (nitrogen covalently bonded) is more electron donating than the azine backbone (nitrogen bonded by electron pair donation) as expected. In the neutral series of complexes electron donation increases with phosphine substitution in the order Ph < Pri = c-C6H11 < But with the corresponding decrease of carbonyl valence vibration frequency. The tert-butyl cationic complex undergoes in a low yield an unusual diphosphinoazine bond cleavage with simultaneous oxidation of the metal resulting in a binuclear bis(iminophosphine)dirhodium complex [{(But)2PCH2C(But)NH}Rh(Cl)2(μ-Cl)]2 the structure of which was also determined by X-ray diffraction. 相似文献
4.
Daniela I. Bezuidenhout 《Journal of organometallic chemistry》2007,692(4):774-783
The binuclear alkoxycarbene complexes [M2(CO)9{C(OEt)C4H3Y}] (M = Mn, Y = S(1), O(2); Re, Y = S(3), O(4)) were synthesised and characterised, giving axial carbene ligands for the dimanganese complexes, and equatorial carbene ligands for the dirhenium complexes. Aminolysis of these complexes with ammonia and n-propylamine yielded complexes [M2(CO)9{C(NHR)C4H3Y}] (R = H, M = Mn, Y = S(5), O(6); Re, Y = S(7), O(8); R = propyl, M = Mn, Y = S(9), O(10); Re, Y = S(11), O(12)). For the smaller NH2-substituted carbene ligands, the X-ray structures determined showed equatorial carbene ligands for both dimanganese and dirhenium complexes, while the NHPr-substituted carbene complexes retained the original configurations of the precursor alkoxy carbene complex, indicating that the steric effects of both the M(CO)5-fragment and the carbene ligand substituent can affect the coordination site of the carbene ligands of Group VII transition metal complexes in the solid state. 相似文献
5.
[Tc(NPh)Cl3(PPh3)2] or [Re(NPh)Cl3(PPh3)2] react with two equivalents of Na2mnt (mnt2– = 1,2‐dicyanoethene‐1,2‐dithiolate) with formation of anionic complexes of the composition [M(NPh)(mnt)2]–. The products can be isolated as large red blocks of their AsPh4+ salts. The complex anions contain square‐pyramidal coordinated metal atoms with the phenylimido ligands in apical positions. The M–N–C bonds are almost linear. A similar phenylimido complex with an additional amino group was synthesized from [Re(NC6H4‐4‐NH2)Cl3(PPh3)2]. The presence of such substituents may allow coupling of the metal complexes to biomolecules such as peptides, proteins, or sugars, provided the M=N bonds are sufficiently stable against hydrolysis. 相似文献
6.
Salah A. Naman Ayad H. Jassim Mahasin F. Alias 《Journal of photochemistry and photobiology. A, Chemistry》2002,150(1-3):41-48
Photodecomposition of 10 different molybdenum and tungsten mixed carbonyl complexes, [M(CO)3(B)(A)]I2 where B=o-phenanthroline or bipyridyl, A=3-(2-propynyl)thio-4,5-diphenyl-4H-1,2,4-triazole (TRZA) or S-propynyl-2-thio benz-imidazole (BIMDA) and 2(2-propynyl-thio(5-phenyl)-1,3,4-oxadiazole (OXA). M(CO)3(TRZA)I2, [M(CO)2(PPh3)X(TRZA)IY]IZ where M=Mo, X, Y and Z=1 and M=W, X and Z=2, Y=0, have been performed at 365 nm in oxygen saturated chloroform at 25 °C. The absorbance spectrum of these complexes have been recorded with the time of irradiation in order to examine the kinetics of photodecay.
The apparent rate constant (Kd) for the first-order reaction have been calculated and found to be (3.32–4.79)×10−5 s−1. The primary quantum yields (Φ) has also been calculated and were in the range (8.33–12.1)×10−4. The mechanism of the photodecomposition has been suggested according to the kinetic, and photoproduct analysis data, and is similar to reaction of photo-oxidative degradation of polluted molecules in the water. 相似文献
7.
Marta Sánchez-LozanoEzequiel M. Vázquez-López José M. Hermida-RamónCarlos M. Estévez 《Polyhedron》2011,30(6):953-962
The rhenium(I) carbonyl bromide complex, [ReBr(CO)3(HL)], of the ligand derived from 2,4-dihydroxybenzaldehyde and 4-hydroxybenzoic acid hydrazide (HL), has been prepared. HL and its complex have been characterized by elemental analysis, MS, IR, UV-Vis and 1H NMR spectroscopic methods. The structure of HL and the aqua-complex [Re(OH2)(CO)3(L)] where the ligands are monodeprotonated have been elucidated by X-ray diffraction. The structure of [ReBr(CO)3(HL)] has been calculated from conformational parameters found in the aqua-complex. DFT and TDDFT calculations have been performed to obtain the IR spectra and UV-Vis absorption and emission spectra. The calculated spectra agree with the experimental results. 相似文献
8.
The isocratic normal-phase high-performance liquid chromatography of a series of triphenylphosphine (PPh3)-substituted homo- and hetero-dinuclear metal carbonyl complexes [MM′ (CO)10−n(PPh3)n, where M,M′ = Mn, Re; N = 1,2] is reported. A column packed with silica bonded with phenyl groups was used after preliminary experiments showed that columns packed with conventional silica, and with silica bonded with amion-cyano groups were unsatisfactory for separation. The mobile phases used were hexane-toluene (8:2) and hexane-dichloromethane (90:10). The results suggest that besides the symmetry-imposed polarity of the complexes, the nature of the metal and substituent ligand also determine their retention characteristics. 相似文献
9.
Treatment of Mn(CO)5SiTolp2H (2) with an excess of LiAlH4, NaBH4, or NaBH3(CN) in THF at room temperature gave hydrosilane H---SiTolp2H in high yield together with Mn2(CO)10. No reduction of CO ligands was observed. On the other hand, treatment of 2 with an excess of Red-Al (=Na[(CH3OCH2CH2O)2AlH2]) in toluene and subsequent addition of aqueous acidic solution afforded alkylsilanols (CH3)SiTolp2(OH) and (C2H5)SiTolp2(OH). Treatment of the reaction mixture of 2 and Red-Al with LiAlH4 in diethyl ether instead of hydrolysis gave alkylhydrosilanes (CH3)SiTolp2H and (C2H5)SiTolp2H. The methyl and ethyl groups on silicon originate from the CO ligands in 2. These products clearly demonstrate that not only the Si---C coupling, but also C---C coupling occurs efficiently in this reaction. 相似文献
10.
Ya Chen Jian-Shi Jin Zhi-Gang Zou Xiao-Zeng You 《Journal of organometallic chemistry》2009,694(5):763-43
Rhenium(I) tricarbonyl complexes with bispyridine ligands bearing sulfur-rich pendant, Re(CO)3(Medpydt)X (Medpydt = dimethyl 2-(di(2-pyridyl)methylene)-1,3-dithiole-4,5-dicarboxylate; X = Cl, 1; X = Br, 2) and Re(CO)3(MebpyTTF)X (MebpyTTF = 4,5-bis(methyloxycabonyl)-4′,5′-(4′-methyl-2,2′-dipyrid-4-ylethylenedithio)-tetrathiafulvalene; X = Cl, 5; X = Br, 6), were prepared from the reactions between Re(CO)5X (X = Cl, Br) and Medpydt or MebpyTTF, respectively. Hydrolysis of the above complexes afforded the analogues with carboxylate derivatives, Re(CO)3(H2dpydt)X (X = Cl, 3; X = Br, 4) and Re(CO)3(H2bpyTTF)X (X = Cl, 7; X = Br, 8). The crystal structures for complexes 1 · 2H2O, 5 and 6 were determined using X-ray single crystal diffraction. UV-Vis absorption spectra of the rhenium complexes show the intraligand and MLCT transitions. Electrochemical behaviors of all new compounds were studied with cyclic voltammetry. Upon irradiation, complexes 3-6 exhibit blue to red emissions in fluid solutions at the room temperature. The performance of complexes 3, 4, 7 and 8 as photosensitizers for anatase TiO2 solar cells was preliminarily investigated as well. 相似文献
11.
This work reports the reduction of a large variety of aldehydes and ketones with the system PhSiH3/[CpRu(PPh3)2Cl] in good to excellent yields and high chemoselectivity. The catalyst [CpRu(PPh3)2Cl] can be used in at least 12 catalytic cycles with excellent catalytic activity and several substrates were reduced under solvent free conditions. 相似文献
12.
Jorge Bravo Jesús Castro Ma Carmen Rodríguez-Martínez Stefano Antoniutti 《Journal of organometallic chemistry》2007,692(24):5481-5491
Hydride complex RuH2(PFFP)2 (1) [PFFP = (CF3CH2O)2PN(CH3)N(CH3)P(OCH2CF3)2] was prepared by allowing the compound RuCl4(bpy) · H2O (bpy = 1,2-bipyridine) to react first with the phosphite PFFP and then with NaBH4. Chloro-complex RuCl2(PFFP)2 (2) was also prepared, either by reacting RuCl4(bpy) · H2O with PFFP and zinc dust or by substituting triphenylphosphine with PFFP in the precursor complex RuCl2(PPh3)3. Hydride derivative RuH2(POOP)2 (3) (POOP = Ph2POCH2CH2OPPh2) was prepared by reacting compound RuCl3(AsPh3)2(CH3OH) first with the phosphite POOP and then with NaBH4. Depending on experimental conditions, treatment of carbonylated solutions of RuCl3 · 3H2O with POOP yields either the cis- or trans-RuCl2(CO)(PHPh2)(POOP) (4) derivative. Reaction of both cis- and trans-4 with LiAlH4 in thf affords dihydride complex RuH2(CO)(PHPh2)(POOP) (5). Chloro-complex all-trans-RuCl2(CO)2(PPh2OMe)2 (6) was obtained by reacting carbonylated solutions of RuCl3 · 3H2O in methanol with POOP. Treatment of chloro-complex 6 with NaBH4 in ethanol yielded hydride derivative all-trans-RuH2(CO)2(PPh2OMe)2 (7). The complexes were characterised spectroscopically and the X-ray crystal structures of complexes 1, 3, cis-4 and 6 were determined. 相似文献
13.
《Journal of Coordination Chemistry》2012,65(10):1809-1834
The rhenium(II) dinitrosyl and mononitrosyl complexes, i.e. [Re(NO)2(CN)4]·(Phen)2·2H2O (1) and PhenH[Re(NO)(CN)4(H2O)]·(Phen)·3H2O (2) have been isolated and characterized. The X-ray crystal structure of 2 reveals that Re(II) is octahedrally coordinated with one nitrosyl, four cyanides, and one water, with one phenanthroline protonated to compensate the charge of the Re(II) center. The crystal structure shows chemically significant non-covalent interactions like hydrogen bonding involving the uncoordinated water and π–π interactions between phenanthrolinium and phen. The structures of both complexes have been optimized by DFT. Absorption and emission spectral studies and viscosity measurements indicate that both 1 and 2 interact with calf thymus DNA through partial intercalation of DNA bases. The intrinsic-binding constants, obtained from UV–vis spectroscopic studies, are 1.2?×?104 and 7.2?×?104?M?1 for 1 and 2, respectively. Both 1 and 2 are capable of inducing cleavage of plasmid DNA in the presence of H2O2 to form the supercoiled form to nicked circular form. The spectroscopic results of DNA binding are supported by molecular docking studies. 相似文献
14.
The main purpose of the development of an Rh(I) Carbonyl Phosphine force field was to predict the molecular structure of Rh(I) complexes as well as to compute possible intermediates or transition states during the oxidative addition of CH3I to these complexes. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 692–703, 2000 相似文献
15.
Dionysia Papagiannopoulou George Makris Charalambos Tsoukalas Catherine P. Raptopoulou Aris Terzis Maria Pelecanou Ioannis Pirmettis Minas S. Papadopoulos 《Polyhedron》2010
The synthesis and structural characterization of the neutral rhenium complex fac-[Re(NSO)(CO)3], Re-1, where (NSO) is a tridentate bifunctional chelating agent, 3-(carboxymethylthio)-3-(1H-imidazol-4-yl)propanoic acid (1), is presented. The complex crystallized from methanol–water and its structure was assigned by IR and 1H, 13C NMR spectroscopies and X-ray crystallography. Furthermore, the analogous technetium complex fac-[99mTc(NSO)(CO)3], 99mTc-1, was synthesized in high yield by reacting ligand 1 with the fac-[99mTc(OH2)3(CO)3]+ precursor for 30 min at 85 °C. The tracer complex was found to be more than 95% stable in the L-histidine challenge experiment. Our data indicate that the bifunctional NSO chelating agent 1 can be successfully applied for the development of potential 99mTc-radiopharmaceuticals. 相似文献
16.
Raymundo Cea-Olivares Rubén Alfredo Toscano Marcela López Patricia García 《Monatshefte für Chemie / Chemical Monthly》1993,124(2):177-183
Summary A series of diheterocyclic dithiocarbamate complexes of the typeRNCS2
MS2C2H4, whereR=pyrrolidyl, 3-pyrrolyl, 4-morpholyl, 3-methlpiperidyl andM=As or Sb were obtained and characterized by IR,1H, and13C-NMR, mass spectroscopy and elemental analyses. The X-ray crystal structure determination of the 4-morpholinecarbodithioate of 1,3-dithia-2-arsa-cyclopentane shows a monodentate behaviour of theRNCS2 entity.Dedicated to Dr. Lydia Rodríguez on the Occasion of her 60th Birthday. 相似文献
17.
18.
Aromatic polyamide nanoparticles with carbonyl chloride (COCl) and carboxyl (COOH) groups were obtained using a precipitation polymerization method. The morphology, number of COCl groups incorporated, and degree of polymerization of the resulting particles depended on the reaction system. The COOH group of diamine used decreased the reactivity of NH2 groups and chemically stabilized the COCl groups existing at the ends of the molecular chains. Also, the COCl groups were retained in particles by the rapid formation of particles. Thus, the chemical structures and formation mechanism were found to play an important role in the formation of particles with COCl groups. 相似文献
19.
Celedonio M. Alvarez 《Journal of organometallic chemistry》2007,692(26):5717-5726
[MBr(CO)3{κ2(N,O)-pyca}] [M = Mn(1a), Re(1b), pyca = pyridine-2-carboxaldehyde] and [MoCl(η3-C3H4Me-2)(CO)2{κ2(N,O)-pyca}] (1c) react with aminoacid β-alanine to give the corresponding iminopyridine complexes 2a-2c. The same method affords the iminopyridine derivatives from γ-aminobutyric acid (GABA) (3a-3c) and 3-aminobenzoic acid (4a-4c). For complexes 2a-2c, 3a, 3c and 4a, the solid state structures have been determined by X-ray crystallography, revealing interesting differences in their hydrogen-bonding patterns in solid state. 相似文献
20.
The new pyrazole-containing ligand 3,5-Me2pz(CH2)2S(CH2)2COOH (L1H) was synthesized and used to prepare the complexes fac-[M(κ3-L1)(CO)3] (M = Re (1), 99mTc(1a)), which were obtained in high yield albeit with a low specific activity in the case of 99mTc. The X-ray diffraction analysis of 1 confirmed that L1 coordinates to the metal as monoanionic and through a (N,S,O) donor atom set. Challenge experiments of 1a against cysteine and histidine showed that this complex suffers considerable transchelation in vitro. This contrasts with the behavior exhibited by the related complex fac-[99mTc(κ3-L2)(CO)3] (2a) (L2 = 3,5-Me2pz-(CH2)2NH-CH2-COO), anchored by a (N2O)-tridentate ligand. Biodistribution studies of 1a and 2a in mice indicated that both compounds have a relatively similar biological profile. Nevertheless, the fastest blood clearance and minor hepatic retention found for 2a has shown that this complex is more adequate to be further explored in radiopharmaceutical sciences. DFT calculations (ADF program) were performed for these neutral complexes and related cationic M(I) (M = Re, Tc) tricarbonyl complexes anchored by pyrazole-containing ligands, in order to have a better understanding of the influence of the donor atom set (N,N,O vs. N,O,S; N,N,N vs. N,N,S vs. N,S,S) on their in vitro stability. The differences of the calculated binding energies are not significant, suggesting that the in vitro behavior of these Re(I)/Tc(I) tricarbonyl complexes is not determined by thermodynamic factors. 相似文献