首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Attempts to prepare alkaline metal uranyl niobates of composition A1−xUNbO6−x/2 by high-temperature solid-state reactions of A2CO3, U3O8 and Nb2O5 led to pure compounds for x=0 and A=Li (1), Na (2), K (3), Cs (4) and for x=0.5 and A=Rb (5), Cs (6). Single crystals were grown for 1, 3, 4, 5, 6 and for the mixed Na0.92Cs0.08UNbO6 (7) compound. Crystallographic data: 1, monoclinic, P21/c, a=10.3091(11), b=6.4414(10), c=7.5602(5) Å, β=100.65(1), Z=4, R1=0.054 (wR2=0.107); 3, 5 and 7 orthorhombic, Pnma, Z=8, with a=10.307(2), 10.272(4) and 10.432(3) Å, b=7.588(1), 7.628(3) and 7.681(2) Å, c=13.403(2), 13.451(5) and 13.853(4) Å, R1=0.023, 0.046 and 0.036 (wR2=0.058, 0.0106 and 0.088) for 3, 5 and 7, respectively; 6, orthorhombic, Cmcm, Z=8, and a=13.952(3), b=10.607(2) Å, c=7.748(2) Å, R1=0.044 (wR2=0.117).The crystal structure of 1 is characterized by layers of uranophane sheet anion topology parallel to the (100) plane. These layers are formed by the association by edge-sharing of chains of edge-shared UO7 pentagonal bipyramids and chains of corner-shared NbO5 square pyramids alternating along the [010] direction. The Li+ ions are located between two consecutive layers and hold them together; the Li+ ions and two layers constitute a neutral “sandwich” {(UNbO6)-(Li)22+-(UNbO6)}. In this unusual structure, the neutral sandwiches are stacked one above another with no formal chemical bonds between the neutral sandwiches.The homeotypic compounds 3, 5, 6, 7 have open-framework structures built from the association by edge-sharing in two directions of parallel chains of edge-shared UO7 pentagonal bipyramids and ribbons of two edge-shared NbO6 octahedra further linked by corners. In 3, 5 and 7, the mono-dimensional large tunnels created in the [001] direction by this arrangement can be considered as the association by rectangular faces of two columns of triangular face-shared trigonal prisms of uranyl oxygens. In 3 and 7, all the trigonal prisms are occupied by the alkaline metal, in 5, they are half-occupied. In 6, the polyhedral arrangement is more symmetric and the tunnels created in the [010] direction are built of face-sharing cubes of uranyl oxygens totally occupied by the Cs atoms. This last compound well illustrates the structure-directing effect of the conterion.  相似文献   

2.
3.
The reaction of 2,6-diethyl-4,8-dimethyl-s-indacenyl-dilithium (Li2Ic′) with [Cp*RuCl]4 gives the organometallic binuclear bis-pentamethylcyclopentadienyl-ruthenium-s-indacene complex, [{Cp*Ru}2Ic′] (1, Ic′ = 2,4-diethyl-4,8-dimethyl-s-indacene), in high yields. The subsequent oxidation of 1 with a ferricinium salt ([Fc]+[BF4]) gives the mixed valence compound [{Cp*Ru}2Ic′]+[BF4] (1+). Compound 1 was structurally characterized by X-ray crystallography, finding that both {Cp*Ru} fragments are coordinated to opposite sites of the Ic′ ligand. The structural and electronic features of 1 and 1+ have been rationalized by Density Functional Theory (DFT) calculations, which suggest that both metallic centers get closer to the Ic′ and subtle electronic reorganizations occurs when chemical oxidation takes place. Cyclic voltammetry and ESR experiments suggest a high electronic interaction between the metallic centers mediated by the Ic′ bridging ligand. Time dependent DFT (TD-DFT) calculations were carried out to understand and assign the intervalence band present in the mixed-valent specie (1+). The main achievement of this article is to feature the relationship of the experimental data with the computational results obtained with the Amsterdam Density Functional package (ADF). Both experimental and theoretical facts demonstrate that the mixed valence system (1+) is a delocalized one, and it can be classified as a Class III system according to the Robin & Day classification.  相似文献   

4.
5.
The organic-inorganic hybrid materials vanadium oxide [VIVO2(phen)2]·6H2O (1) and [(2,2′-bipy)2VVO2](H2BO3)·3H2O (2) have been conventional and hydrothermal synthesized and characterized by single crystal X-ray diffraction, elemental analyses, respectively. Although the method and the ligand had been used in the syntheses of the compounds (1) and (2) are different, they almost possess similar structure. They all exhibit the distorted octahedral [VO2N4] unit with organonitrogen donors of the phen and 2,2′-bipy ligands, respectively, which coordinated directly to the vanadium oxide framework. And they are both non-mixed-valence complexes. But the compound (1) is isolated, and the compound (2) consists of a cation of [(2,2′-bipy)2VVO2]+ and an anion of (H2BO3). So the valence of vanadium of (1) and (2) are tetravalence and pentavalence, respectively. Meanwhile it is noteworthy that π-π stacking interaction between adjacent phen and 2,2′-bipy groups in compounds 1 and 2 also play a significant role in stabilization of the structure. Thus, the structure of [VIVO2(phen)2]·6H2O and [(2,2′-bipy)2VVO2](H2BO3)·3H2O are both further extended into interesting three-dimensional supramolecular. Crystal data: (1) Triclinic, a=8.481(4), b=12.097(5), and α=66.32(2), β=82.97(3), and γ=82.59(4)°, Z=2, R1=0.0685, wR2=0.1522. (2) Triclinic, a=6.643(13), b=11.794(2), and α=101.39(3), β=101.59(3), and γ=97.15(3)°, Z=2, R1=0.0736, wR2=0.1998.  相似文献   

6.
7.
8.
Three new uranyl tungstates, A8[(UO2)4(WO4)4(WO5)2] (A=Rb (1), Cs (2)), and Rb6[(UO2)2O(WO4)4] (3), were prepared by high-temperature solid-state reactions and their structures were solved by direct methods on twinned crystals, refined to R1=0.050, 0.042, and 0.052 for 1, 2, and 3, respectively. Compounds 1 and 2 are isostructural, monoclinic P21/n, (1): a=11.100(7), b=13.161(9), , β=90.033(13)°, , Z=8 and (2): , , , β=89.988(2)°, , Z=8. There are four symmetrically independent U6+ sites that form linear uranyl [O=U=O]2+ cations with rather distorted coordination in their equatorial planes. There are six W positions: W(1) and W(2) have square-pyramidal coordination (WO5), whereas W(3), W(4), W(5), and W(6) are tetrahedrally coordinated. The structures are based upon a novel type of one-dimensional (1D) [(UO2)4(WO4)4(WO5)2]4− chains, consisting of WU4O25 pentamers linked by WO4 tetrahedra and WO5 square pyramids. The chains run parallel to the a-axis and are arranged in modulated pseudo-2D-layers parallel to (0 1 0). The A+ cations are in the interlayer space between adjacent pseudo-layers and provide a 3D integrity of the structures. Compounds 1 and 2 are the first uranyl tungstates with 2/3 of W atoms in tetrahedral coordination. Such a high concentration of low-coordinated W6+ cations is probably responsible for the 1D character of the uranyl tungstate units. The compound 3 is triclinic, Pa=10.188(2), b=13.110(2), , α=97.853(3), β=96.573(3), γ=103.894(3)°, , Z=4. There are four U positions in the structure with a typical coordination of a pentagonal bipyramid that contain uranyl ions, UO22+, as apical axes. Among eight W sites, the W(1), W(2), W(3), W(4), W(5), and W(6) atoms are tetrahedrally coordinated, whereas the W(7) and W(8) cations have distorted fivefold coordination. The structure contains chains of composition [(UO2)2O(WO4)4]6− composed of UO7 pentagonal bipyramids and W polyhedra. The chains involve dimers of UO7 pentagonal bipyramids that share common O atoms. The dimers are linked into chains by sharing corners with WO4 tetrahedra. The chains are parallel to [−101] and are arranged in layers that are parallel to (1 1 1). The Rb+ cations provide linkage of the chains into a 3D structure. The compound 1 has many structural and chemical similarities to its molybdate analog, Rb6[(UO2)2O(MoO4)4]. However, the compounds are not isostructural. Due to the tendency of the W6+ cations to have higher-than-fourfold coordination, part of the W sites adopt distorted fivefold coordination, whereas all Mo atoms in the Mo compound are tetrahedrally coordinated. Distribution of the WO5 configurations along the chain extension does not conform to its ‘typical’ periodicity. As a result, both the chain identity period and the unit-cell volume are doubled in comparison to the Mo analog, which leads to a new structure type.  相似文献   

9.
Thioethers PhC2H4SMe, PhC3H6SiPr and MeSAllyl form substitutionally labile monomeric adducts (p-cymene)RuCl2(SRR′) (2a-c) upon treatment with the {(p-cymene)RuCl2}2 dimer (p-cymene = η6-MeC6H4iPr-1,4). Pure adducts were obtained by crystallization from CH2Cl2/Et2O, and 2a,c as well as the bis(thioether) complex (3) were studied by X-ray crystallography. The trichloro bridged diruthenium complex is formed as a byproduct in the preparation of 3 and was also crystallographically characterized. In solution, pure samples 2a-c equilibrate with free thioether and the dimeric starting complex 1. The amount of 1 present in these mixtures increases with increasing bulk of the thioether substituents. Attempts to thermally replace the cymene ligand by the dangling arene substituent of the thioether ligand of 2a,b failed. Complexes 2a-c as well as the dimethylsufide derivative 2d were studied by cyclic voltammetry and display a close to reversible (2a,c,d) or partially reversible (2b) oxidation near +0.85 V and an irreversible reduction at rather negative potential. New peaks observed after oxidation and reduction point to dissociation of the thioether ligand as the main decomposition pathway of the associated radical cations and anions.  相似文献   

10.
The synthesis of five chiral liquid crystalline monomers (M1-M5), and their corresponding side-chain polymers (P1-P5) based on (S)-(+)-2-methyl-1-butanol derivatives is described. The chemical structures of the monomers were confirmed by FT-IR, 1H NMR, and elemental analyses. The structure-property relationships of the monomers and polymers obtained are discussed. The mesomorphic properties were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), polarizing optical microscopy (POM), and X-ray diffraction (XRD) measurements. All monomers showed a cholesteric phase. For M2, M3, and M5, besides a cholesteric phase and a smectic A (SA) phase, M2 also revealed an enantiotropic chiral smectic C phase and a monotropic smectic B (SB) phase, and M3 also showed a SB phase. The polymers P1-P5 exhibited a SA phase, moreover, P2, P3 and P5 also revealed a phase. The experimental results demonstrated that a flexible siloxane backbone and a long flexible spacer tended to exhibit a low glass transition temperature, high thermal stability, and wide mesophase temperature range.  相似文献   

11.
E-1-(1″-hydroxycarbonylferrocen-1′-yl)-2-(cycloheptatrienyl)ethene (4) was synthesized by using selective transmetallation reactions. Reaction of 4 with [Cp*Ru(CH3CN)3](PF6) revealed the vinylogue monohydro sesquifulvalene complex E-1-(1″-hydroxycarbonylferrocen-1′-yl)-2-{(1?-6?-η-cyclohepta-1?,3?,5?-trien-1?-yl)(η5-pentamethylcyclopentadienyl)ruthenium(II)}ethene hexafluorophosphate (5). X-ray structure analysis demonstrates that complex 5 crystallizes in the triclinic space group , which forms discrete dimers via two hydrogen bonds between the carboxylic functions. Reaction of complex 5 with triethylamine or NaHCO3 generated a new organometallic zwitterion E-1-(1″-oxycarbonylferrocen-1′-yl)-2-{(1?-6?-η-cyclohepta-1?,3?,5?-trien-1?-yl)(η5-pentamethylcyclopentadienyl)ruthenium(II)}ethene (6), which was characterized by UV, IR, and NMR spectra.  相似文献   

12.
The aerial parts of Nauplius graveolens subsp. odorus (Schousb) Wikl. afforded a novel sesquiterpene lactone (1) named naupliolide together with the known 6,7,9,10-tetradehydroasteriscanolide 2 and asteriscunolides A-D 3a-d. The structure of compound 1 corresponds to a novel skeleton of 14,15-dimethyl-7,13-dioxotricyclic[6.4.0.09,11]dodeca-12,13-olide, and was established on the basis of spectroscopic methods including 2D-NMR. The coexistence of naupliolide 1 together with the structurally related sesquiterpene lactones asterisculolides A-D (3a-d) and 6,7,9,10-tetradehydroasteriscanolide 2, seems to indicate their biosynthetic relationship.  相似文献   

13.
The synthesis of novel N-acetyl-N,N-dipyrid-2-yl complexes of RhI and IrI, i.e. [RhCl(CH3CONPy2)(COD)] (1) and [IrCl(CH3CONPy2)(COD)] (2), respectively, is described. Upon prolonged treatment in CH2Cl2 at room temperature, complex 1 is transformed into a cationic Rh-complex, i.e. [Rh(CH3CONPy2)(COD)+RhCl2(COD)] (1a). Compound 1a crystallizes in the monoclinic space group P21/c, complex 2 crystallizes in the triclinic space group . Compound 1 was investigated for its catalytic activity in the hydroformylation of cyclooctene as well as of 1-octene. In addition, 1 was used in various carbonyl hydrosilylation reactions of both aldehydes and ketones. There, turn-over numbers up to 50 000 and yields in the range of 85-100% were observed. Finally, compound 1 was successfully used for the polymerization of N2CHCOOEt yielding highly stereoregular poly(ethoxycarbonylcarbene) with Mw = 67 000 g/mol and a polydispersity index (PDI) of 2.59.  相似文献   

14.
15.
Nine organotin esters, Me2SnL21, Me3SnL 2, n-Bu2SnL23, n-Bu3SnL 4, Ph3SnL 5, (PhCH2)2SnL26, [(Me2SnL)2O]27, Et2SnL28 and n-Oct2SnL29, of (E)-3-(3-fluorophenyl)-2-(4-chlorophenyl)-2-propenoic acid, HL have been synthesized and characterized by elemental analysis, IR, Multinuclear NMR (1H, 13C and 119Sn) and mass spectrometry. The geometry around the tin atom has been deduced and compared both in solution and solid states. The crystal structure of compound 5 has been determined by X-ray single crystal analysis, which shows a tetrahedral geometry around the tin atom with space group . These compounds have also been screened for bactericidal, fungicidal activities and cytotoxicity data.  相似文献   

16.
The reaction of boron heterocycles 1 and 2 with n-butyl lithium and alkyl halides led to (N→B) phenyl[N-alky-N-(2-alkyl)aminodiacetate-O,O′,N]boranes 36(ab), 7(b) and 9(b), where alkyl can be in exo and/or endo position, and phenyl[N-alkyl-N-(2-alkyl)aminodiacetate-O,O′,N]boranes 7(c) and 8(c) isomers, which do not display the intramolecular N→B coordination bond. The existence of steric interactions between N-benzyl and the alkyl group at 2 position was indicated by 1H and 13C NMR, while, the δ(11B) values confirm the tetrahedral and trigonal environment of the 11B nucleus in these compounds. Moreover, the compounds were characterized by COSY, HETCOR and homonuclear proton decoupling experiment. The study of the intramolecular N→B coordination by dynamic NMR afforded a ΔG‡ value of 81.09 kJ/mol for compound 6(b).  相似文献   

17.
Reaction of 2-benzoylpyridine thiosemicarbazone (H2Bz4DH, HL1) and its N(4)-methyl (H2Bz4Me, HL2) and N(4)-phenyl (H2Bz4Ph, HL3) derivatives with SnCl4 and diphenyltin dichloride (Ph2SnCl2) gave [Sn(L1)Cl3] (1), [Sn(L1)PhCl2] (2), [Sn(L2)Cl3] (3), (4) [Sn(L3)PhCl2] (5) and [Sn(L3)Ph2Cl] (6). Infrared and 1H, 13C and 119Sn NMR spectra of 1-3, 5 and 6 are compatible with the presence of an anionic ligand attached to the metal through the Npy-N-S chelating system and formation of hexacoordinated tin complexes. The crystal structures of 1-3, 5 and 6 show that the geometry around the metal is a distorted octahedron formed by the thiosemicarbazone and either chlorides or chlorides and phenyl groups. The crystal structure of 4 reveals the presence of and trans [Ph2SnCl4]2−.  相似文献   

18.
Crystalline [Li{N(SiMe2OMe)C(tBu)C(H)(SiMe3)}]2 (5), [Li{N(SiMe2OMe)C(Ph)C(H)(SiMe3)}]2 (6), [C(C6H3Me2-2,5)C(H)(SiMe3)}(TMEDA)](7), [Li{N(SiMe(OMe)2)C(tBu)C(H)(SiMe3)}(THF)]2 (8), Li{N(SiMe(OMe)2)C(Ph)C(H)(SiMe3)}(TMEDA) (9) and [Li{N(SiMe2OMe)C(tBu)C(H)(SiMe2OMe)}]2 (10) were readily obtained at ambient temperature from (i) [Li{CH(SiMe3)(SiMe2OMe)}]8 (1) and an equivalent portion of RCN (R=tBu (5), Ph (6) or 2,5-Me2C6H3 (7)); (ii) [Li{CH(SiMe3)(SiMe(OMe)2)}] (2) and an equivalent portion of tBuCN (8) or PhCN (9); and (iii) [Li{CH(SiMe2OMe)2}] (3) and one equivalent of tBuCN (10). Reactions (i) and (ii) were regiospecific with SiMe3−n(OMe)n>SiMe3 in 1,3-migration from C (in 1 or 2)→N. The 1-azaallyl ligand was bound to the lithium atom as a terminally bound κ1-enamide (8 and 10), a bridging η3-1-azaallyl (6), or a bridging κ1-enamide (5). The stereochemistry about the CC bond was Z for 5, 8 and 10 and E for 7. X-ray data are provided for 5, 6, 7, 8 and 10 and multinuclear NMR spectra data in C6D6 or C6D5CD3 for each of 5-10.  相似文献   

19.
The magnetic and transport properties of ternary rare-earth chromium germanides RCr0.3Ge2 (R=Y and Tb-Er) have been determined. X-ray and neutron diffraction studies indicate that these compounds have the CeNiSi2-type structure (space group Cmcm) [1]. Magnetic measurements reveal the antiferromagnetic ordering below TN equal to 18.5 K (R=Tb), 11.8 K (Dy), 5.8 K (Ho) and 3.4 K (Er). From the neutron diffraction data the magnetic structures have been determined. For TbCr0.3Ge2 and DyCr0.3Ge2 at low temperatures the magnetic ordering can be described by two vectors k1=(,0,0) and k2=(,0,), and k1=(,0,0) and k2=(,0,), respectively. In HoCr0.3Ge2 and ErCr0.3Ge2 the ordering can be described by one propagation vector equal to (,,0) and (0,0,0.4187(2)), respectively. In DyCr0.3Ge2 some change in the magnetic ordering is observed at Tt=5.1 K. In temperature range from Tt to TN the magnetic ordering is given by one propagation vector k=(,0,0). YCr0.3Ge2 is a Pauli paramagnet down to 1.72 K which suggests that in the entire RCr0.3Ge2 series the Cr atoms do not carry magnetic moments. All compounds studied exhibit metallic character of the electrical conductivity. The temperature dependencies of the lattice parameters reveal strong magnetostriction effect at the respective Nèel temperatures.  相似文献   

20.
Two new ligands 1-(2-methoxyphenyl)-3,4-diphenylcyclopentadiene (1) and 1-(2-methoxyphenyl)-2,3,4,5-tetramethylcyclopentadiene (2), as well as their corresponding cyclopentadienylchromium complexes η5-1-(2-methoxyphenyl)-3,4-diphenylcyclopentadienyl chromium dichloride (3) and η5-1-(2-methoxyphenyl)-2,3,4,5-tetramethylcyclopentadienyl chromium dichloride (4) were synthesized and characterized. Molecular structures of 3 and 4 were determined by single-crystal X-ray diffraction. Complexes 3 and 4 were tested as catalyst precursors for ethylene polymerization. When activated with Al(iBu)3 and , complex 3 shows reasonable catalytic activity while 4 exhibits high catalytic activity for ethylene polymerization. The effects of temperature and Al/Cr ratio on the catalytic activity were studied. The molecular weight and melting temperature of the produced polyethylenes were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号