共查询到20条相似文献,搜索用时 15 毫秒
1.
The high resolution absorption spectrum of monodeuterated water, HDO, has been recorded by Intracavity Laser Absorption Spectroscopy (ICLAS) in the 12 145-13 160 cm−1 region. The achieved sensitivity (noise equivalent absorption on the order of αmin ∼ 10−9 cm−1) allowed detecting transitions with line strengths as weak as 10−27 cm/molecule which is about 50 times lower than the weakest line intensities previously detected in the considered region.The rovibrational assignment of the 1179 lines attributed to the HDO isotopologue was based on the results of the variational calculations of Schwenke and Partridge as well as the recent calculations based on a new HDO potential energy surface refined from the fitting to the available experimental data. The overall agreement between these new calculations and the observed spectrum is very good, the rms deviation of the differences between the calculated and observed energy values being 0.05 cm−1. A set of 304 new experimental HDO energy levels was obtained. In particular, band origins for the (1 2 2), (2 0 2), and (3 1 1) vibrational states, at 12 568.190, 12 644.652, and 12 919.938 cm−1, respectively, and their rotational sublevels are derived for the first time. A detailed HDO database of 1337 transitions was constructed and is provided as Supplementary Material. 相似文献
2.
The absorption spectrum of monodeuterated water has been recorded between 9100 and 9640 cm−1 using intracavity laser absorption spectroscopy (ICLAS) based on a vertical external cavity system emitting laser (VeCSEL). Overall 1706 lines were attributed to the HDO species. The spectrum assignment was performed on the basis of the ab initio calculations by Schwenke and Partridge. A set of 746 energy levels was derived from transitions assigned to 13 upper vibrational states, 300 of them being reported for the first time. Resonance interactions leading to an important strengthening and observations of the very weak 7ν2 and ν1 + 5ν2 bands are discussed. A detailed line list has been generated. 相似文献
3.
The weak absorption spectrum of dideuterated water, D2O, has been recorded by Intracavity Laser Absorption Spectroscopy (ICLAS) between 11 400 and 11 900 cm−1. This spectrum is dominated by the 3ν1 + ν2 + ν3 and the ν1 + ν2 + 3ν3 centered at 11 500.25 and 11 816.64 cm−1, respectively. A total of 530 energy levels belonging to eight vibrational states were determined. The rovibrational assignment process of the 840 lines attributed to D2O was mostly based on the results of new variational calculations consisting in a refinement of the potential energy surface of Shirin et al. [J. Chem. Phys., 120 (2004) 206] on the basis of recent experimental observations, and a dipole moment surface from Schwenke and Partridge [J. Chem. Phys. 113 (2000) 6592]. The overall agreement between these calculations and the observed spectrum is very good both for the line positions and the line intensities. 相似文献
4.
B.A. Voronin O.V. Naumenko P.-F. Coheur A. Jenouvrier A.C. Vandaele 《Journal of Molecular Spectroscopy》2007,244(1):87-101
Assignment of an HDO line list extracted from a recently measured H2O/HDO/D2O Fourier transform absorption spectrum recorded in the 11 600-23 000 cm−1 region by Bach et al. (M. Bach, S. Fally, P.-F. Coheur, M. Carleer, A. Jenouvrier, A.C. Vandaele, J. Mol. Spectrosc. 232 (2005) 341-350.) is presented. More than 94% of the 3256 lines are given quantum number assignments and ascribed to line absorption by HDO; most of the remaining lines are actually due to D2O. High accuracy variational predictions of line positions and intensities are used for the spectral assignment process. Assignments to the ν1 + 5ν3, 2ν2 + 5ν3, ν1 + ν2 + 3ν3 and ν1 + 6ν3 bands are presented for the first time. Comparisons are made with published ICLAS spectra covering the same spectral region and suggestions made for its recalibration. The results are used to illustrate the dynamical behaviour of highly excited vibrational states of HDO and to discuss previous vibrational assignments to high lying rotation-vibration states of this system. 相似文献
5.
O.V. Naumenko S. Bguier O.M. Leshchishina A. Campargue 《Journal of Quantitative Spectroscopy & Radiative Transfer》2010,111(1):36-44
The high resolution absorption spectrum of monodeuterated water, HDO, has been recorded by Intracavity Laser Absorption Spectroscopy (ICLAS) in the 13,020–14,115 cm−1 region dominated by the 4ν3 band. The achieved noise equivalent absorption (αmin10−9 cm−1) allowed detecting transitions with line strengths as small as 2×10−27 cm/molecule which is about 10 times lower than the smallest line intensities previously detected in the region.The rovibrational assignment of the spectrum was based on the results of the variational calculations of Schwenke and Partridge (SP) as well as recent calculations using a new potential energy surface performed by Voronin, Tolchenov and Tennyson (VTT). 2157 transitions involving 21 upper vibrational states were assigned to HD16O while only four bands were previously reported in the region. A set of 157 new energy levels could be derived. It includes rotational levels of several highly excited bending states, in particular the (0 11 0) pure bending state. For some states like the (1 0 3) and (0 2 3) Fermi dyad, effective Hamiltonian modelling was needed to establish the vibrational assignments of some rotational levels. VTT calculations were found to significantly improve the SP results, the rms deviation of the calculated and observed energies being decreased from 0.23 to 0.06 cm−1.Finally, 79 transitions of the 4ν3 band of the HD18O isotopologue were assigned, leading to the derivation of 48 levels, which are the most excited energy levels reported so far for this isotopologue. 相似文献
6.
The high resolution absorption spectrum of dideuterated water, D2O, has been recorded by Intracavity Laser Absorption Spectroscopy (ICLAS) in the 12 850-13 380 cm−1 spectral region which is the higher energy region reported so far for this water isotopologue. Very high deuterium enrichment was necessary to minimize the HDO absorption lines overlapping the D2O spectrum. The achieved sensitivity (noise equivalent absorption αmin ∼ 10−9 cm−1) allowed detecting transitions with line strengths on the order of 5 × 10−28 cm/molecule. The spectrum analysis, based on recent variational calculations has provided a set of 422 new rovibrational energy levels belonging to 11 vibrational states, including rotational sublevels for four new vibrational states and one level of the (0 9 1) highly excited bending state. The very weak (1 0 4)-(0 0 0) band at 13 263.902 cm−1, which is the highest D216O band currently observed, could be assigned despite the fact that the HDO absorption in the region is stronger by three orders of magnitude. The list of 996 D216O transitions is provided as Supplementary Material. 相似文献
7.
Very weak water vapor absorption lines have been investigated by intracavity laser absorption spectroscopy (ICLAS) in the 11 335-11 947 and 12 336-12 843 cm−1 spectral regions dominated by the ν1 + 3ν2 + ν3 and ν2 + 3ν3 bands, respectively. A detectivity on the order of αmin ∼ 10−9 cm−1 was achieved with an ICLAS spectrometer based on a Ti: Sapphire laser. It allowed detecting transitions with an intensity down to 5 × 10−28 cm/molecule which is about 10 times lower than the weakest line intensities previously detected in the considered region. A line list corresponding to 1281 transitions with intensity lower than 5 × 10−26 cm/molecule has been generated. A detailed comparison with the line lists provided by the HITRAN database and by recent investigations by Fourier transform spectroscopy associated with very long multi pass cell is presented. The rovibrational assignment performed on the basis of the ab initio calculations of Schwenke and Partridge, has allowed for determining 176 new energy levels belonging to a total of 16 vibrational states. 相似文献
8.
Mohamed Bach Pierre-François Coheur Alain Jenouvrier 《Journal of Molecular Spectroscopy》2005,232(2):341-350
This work presents new measurements of HDO line parameters in the near-infrared and visible regions (11 500-23 000 cm−1). The measurements consist in high-resolution Fourier transform absorption spectra of H2O/HDO/D2O vapor mixtures, obtained using a long absorption path. Spectra with and without nitrogen as the buffer gas were recorded. Due to the simultaneous presence of the three isotopologues H2O, D2O, and HDO, the H2O lines removal and the D2O lines identification were two necessary preliminary steps to derive the HDO line parameters. The D2O contribution was small and confined to the well-known 4ν1 + ν3 band. An extensive listing of HDO spectroscopic parameters was obtained, for the first time, by fitting some 3256 observed lines to Voigt line profiles. The list contains calibrated line positions, absorption cross-sections and, for many of the lines, N2-broadening coefficients, as well as N2-induced frequency shifts. As a result of the low HDO vapor pressures, it was not possible to retrieve the self-broadening parameters. The list is available on the http://www.ulb.ac.be/cpm website. 相似文献
9.
O.N. Ulenikov S.-M. Hu E.S. Bekhtereva Q.-S. Zhu 《Journal of Molecular Spectroscopy》2005,231(1):57-65
The high-resolution absorption spectrum of the HDO molecule was recorded with a Fourier-transform interferometer in the region of 8900-9600 cm−1, where the strongly interacted bands 2ν1 + ν3, 3ν1 + ν2, ν1 + 2ν2 + ν3, 2ν1 + 3ν2, 4ν2 + ν3, ν1 + 5ν2, and 7ν2 are located. About 1000 transitions were assigned to these seven bands based on the ab initio predictions [J. Chem. Phys. 106 (1997) 4618]. Altogether, 375 upper energy levels were determined, including 24 energy levels of the highly excited bending (070) state. On that basis, the necessity of the “Effective Hamiltonian” concept in the spectroscopic analysis is discussed. 相似文献
10.
A. Campargue F. Mazzotti O.L. Polyansky I.A. Vasilenko 《Journal of Molecular Spectroscopy》2007,245(2):89-99
The weak absorption spectrum of dideuterated water, D2O, has been recorded between 12 450 and 12 850 cm−1 by high sensitivity Intracavity Laser Absorption Spectroscopy (ICLAS). This spectral region corresponds to the (ν1 + ν2/2 + ν3) = 5 polyad, dominated by the 4ν1 + ν3 band centered at 12 743.035 cm−1. The achieved sensitivity has allowed for the detection of lines with a minimum intensity of 2 × 10−28 cm/molecule i.e. typically two orders of magnitude lower than previous observations in the region considered. A total of 586 energy levels belonging to 11 vibrational states were determined. The rovibrational assignment process of 1025 lines ascribed to D2O was based on new results of variational calculations by Shirin et al. [S.V. Shirin, N.F. Zobov, O.L. Polyansky, J. Quant. Spectrosc. Radiat. Transfer, in press, doi:10.1016/j.jqsrt.2007.07.010]. The overall agreement between these calculations and the observed spectrum is good both for the line positions and line intensities. The difficulties encountered while performing the rovibrational labeling and the assignment of the weakest transitions not included in Combination Differences relations, are discussed. 相似文献
11.
The absorption spectrum of dideuterated water, D2O, has been recorded between 8800 and 9520 cm−1 by intracavity laser absorption spectroscopy (ICLAS) based on a vertical external cavity system emitting laser (VeCSEL) and by high sensitivity Fourier Transform spectroscopy. The combined analysis of the spectra has allowed attributing 1223 transitions to the D2O species. The spectrum assignment was performed on the basis of the recent results of variational calculations based on an optimized potential energy surface of D2O. A set of 687 energy levels was derived from transitions assigned to eight upper vibrational states, 577 of them being reported for the first time. A detailed line list has been generated. The line intensities were retrieved mainly from the FTS spectrum and the absolute integrated intensities of the 2v1 + v2 + v3 and the v2 + 3v3 bands dominating the spectrum have been determined. 相似文献
12.
The absorption spectrum of water vapor has been investigated by Intracavity Laser Absorption Spectroscopy (ICLAS) between 13 540 and 14 070 cm−1. This spectrum is dominated by relatively strong transitions of the 4δ polyad of vibrational states. The achieved sensitivity - on the order of αmin ∼ 10−9 cm−1 - has allowed one to newly measure 222 very weak transitions with intensities down to 5 × 10−28 cm/molecule at 296 K. Fifty new or corrected H216O energy levels belonging to a total of 13 vibrational states could be determined from the rovibrational analysis based on variational calculations by Schwenke and Partridge. The previous investigations in the region by Fourier Transform Spectroscopy were critically evaluated and used to construct the best to date set of energy levels accessed by transitions in the considered region. All the rovibrational transitions reaching these upper energy levels and having intensities larger than 4.0 × 10−28 cm/mol were calculated. In the resulting line list, the positions at the level of experimental accuracy were augmented with variational intensities leading to the most complete line list for water in normal isotopic abundance in the 13 500-14 100 cm−1 region. 相似文献
13.
The high resolution absorption spectrum of the H218O isotopologue of water has been recorded by Intracavity Laser Absorption Spectroscopy (ICLAS) with a sensitivity on the order of αmin ∼ 10−9 cm−1. The 11 520-12 810 cm−1 spectral region corresponding to the 3ν + δ decade of vibrational states, was explored with an ICLAS spectrometer based on a Ti:Sapphire laser. It allowed detecting transitions with an intensity down to 10−27 cm/molecule which is about 100 times lower than the weaker line intensities available in the literature, in particular in the HITRAN database.The rovibrational assignment was performed on the basis of the results of variational calculations and allowed for assigning 3659 lines to the H216O, H218O, H217O, HD16O and HD18O species, leaving only 1.7% unassigned transitions. A line list including 1712 transitions of H218O has been generated and assigned leading to the determination of 692 rovibrational energy levels belonging to a total of 16 vibrational states, 386 being newly observed. A deviation on the order of 25% has been evidenced for the average intensity values given by HITRAN and the results of variational calculations. Ninety two transitions of the HD18O isotopologue could also be assigned and the corresponding upper rovibrational levels are given. 相似文献
14.
The HDO absorption FT spectrum is recorded and analyzed in the 7500-8200 cm−1 spectral region. The high accuracy ab initio calculation of Schwenke and Partridge was successfully applied for spectrum assignment that resulted in derivation of 508 precise rovibrational energy levels for the (3 0 0), (0 3 1), (1 1 1), (0 6 0), (2 2 0), and (0 0 2) states, with 295 of them being reported for the first time. In particular, eight new energy levels, including the band center at 7914.3170 cm−1, were derived for the highly excited bending (0 6 0) state from transitions borrowing their intensities through local high-order resonance coupling with the (3 0 0) and (0 3 1) states. 相似文献
15.
The absorption spectrum of carbon dioxide has been studied between 8800 and 9530 cm−1 by intracavity laser absorption spectroscopy based on a vertical external cavity surface emitting lasers (VeCSEL). Previous laboratory spectra at high resolution were nearly absent in the considered spectral region. Experiments were carried with natural carbon dioxide and with 13C enriched carbon dioxide leading to the determination of the rovibrational parameters of a total of 15 very weak vibrational transitions, including two bands of the 16O13C18O isotopologue. The observed transitions are assigned to components of the 2ν1 + 3ν3 triad and of the much weaker 5ν1 + ν3 hexad. Our measured line positions are found in excellent agreement with the predictions of the effective Hamiltonians developed for 12C16O2 and 13C16O2 but significant deviations were evidenced for the 16O13C18O minor isotopologue. The relative band intensities within each polyad are also discussed on the basis of the effective Hamiltonian model. 相似文献
16.
The high resolution absorption spectrum of dideuterated water, D216O, has been recorded by Intracavity Laser Absorption Spectroscopy (ICLAS) in the 13 600-14 020 cm−1 spectral region which is the highest energy region reported so far for this water isotopologue. Because the HD16O absorption is stronger by three orders of magnitude in the region under study, it was necessary to use high deuterium enrichment in order to minimize the HD16O absorption lines overlapping the D216O spectrum. With the high sensitivity achieved (noise equivalent absorption αmin ∼10−9 cm−1), transitions with line strengths on the order of 5 × 10−28 cm molecule−1 could be detected. The spectrum analysis, based on recent variational calculations has provided a set of 177 new rovibrational energy levels belonging to six vibrational states.The most complete set of 53 vibrational energy levels of D216O, including the three newly determined band origins, was constructed from an exhaustive review of the literature data. The fitting of the parameters of the vibrational effective Hamiltonian has allowed to reproduce the whole set of vibrational energies with an rms deviation of 0.055 cm−1. This simple model gave consistent vibrational labels of the D216O states up to 18 000 cm−1. Above 15 000 cm−1, Fermi and Darling-Dennison resonance interaction were found to induce strong vibrational mixings of the wave functions in the normal mode basis, leading to ambiguous vibrational labeling. 相似文献
17.
N. Rontu 《Journal of Molecular Spectroscopy》2006,237(1):19-26
Fully fluorinated compounds, known as perfluorinated compounds, are widely used in industrial applications. Recently, some perfluorinated acids have been detected in the atmosphere and the tissues of animals. Some perfluorocarboxylic acids are emitted to the atmosphere from the thermolysis of fluoropolymers and the degradation of fluorotelomer alcohols. The gas phase vibrational spectrum of a representative perfluorocarboxylic acid in the region between 1000 and 11 000 cm−1 has been investigated, with emphasis on the vibrational overtone spectrum in the near-IR region. The most intense transition in the fundamental spectrum is the CF3 stretch while in the overtone region, the O-H stretch carries most of the intensity. A comparison of the perfluorocarboxylic acid vibrational spectrum with the hydrocarbon analog acid is discussed. 相似文献
18.
J.L. Hardwick Z.T. Martin M.J. Pilkenton E.N. Wolf 《Journal of Molecular Spectroscopy》2007,243(1):10-15
The absorption spectra of H12C13CD and H13C12CD have been observed at high resolution between 6480 and 6610 cm−1 using an external cavity diode laser. The strong 2ν1 band has been observed for each species using a sample enriched in deuterium at natural abundance of 13C. Rotational analyses reveal bands of both species to be essentially unperturbed. Centers of unblended lines are determined with an accuracy of approximately 10 MHz. 相似文献
19.
An-Wen Liu 《Journal of Molecular Spectroscopy》2006,237(2):149-162
Fourier-transform absorption spectrum of 18O enriched water sample was recorded in the 1080-7800 cm−1 region. The transitions of H218O were assigned on the base of the high accuracy ab initio calculations by Partridge and Schwenke (PS). One thousand two hundred and forty-six ro-vibrational energy levels were retrieved, which belong to the , 1, and 1.5 polyads: (0 1 0), (1 0 0), (0 2 0), (0 0 1), (1 1 0), (0 1 1), and (0 3 0) states. Four hundred and thirty-two of them are reported for the first time. The results are also investigated comparing with the PS calculations and the available literature data in the considered spectral range. HD18O as a small concentration in the sample, more than 4900 transitions were also observed. These transitions yield 1066 ro-vibrational energies of nine vibrational states, 504 energy levels were obtained for the first time. 相似文献
20.
Olga M. Leshchishina Olga V. Naumenko 《Journal of Quantitative Spectroscopy & Radiative Transfer》2011,112(6):913-924
High-sensitivity Intracavity Laser Absorption Spectroscopy (ICLAS) is used to measure the high resolution absorption spectrum of H218O between 12,580 and 13,550 cm−1. This spectral region covers the 3v+δ polyad of very weak absorption. Four isotopologues of water (H218O, H216O, H217O, HD18O) are found to contribute to the observed spectrum. Spectrum analysis is performed with the aid of variational calculations and allowed for assigning 1126 lines belonging to H218O, while only 160 H218O lines are included in the HITRAN-2008 database. Altogether, 823 accurate energy levels of H218O are determined from transitions attributed to 26 upper vibrational states, 438 of them being reported for the first time. New information includes energy levels of four newly observed vibrational states of H218O: (2 4 0), (1 4 1), (0 4 2) and (2 3 1) at 13,167.718, 13,212.678, 13,403.71 and 15,073.975 cm−1, respectively. H218O transitions involving highly excited bending states like (1 6 0), (0 6 1), (0 7 1), (1 7 0), (0 9 0) and even (0 10 0) have been identified as a result of an intensity borrowing from stronger bands via high-order resonance interactions. Thirty-six new energy levels of H217O, present with a 2% relative concentration in our sample, could be determined. The rotational structure of the (0 2 3) state of HD18O at 13,245.497 cm−1 is also reported for the first time. 相似文献