首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A new compound, K4(SO4)(HSO4)2(H3AsO4) was synthesized from water solution of KHSO4/K3H(SO4)2/H3AsO4. This compound crystallizes in the triclinic system with space group P1¯ and cell parameters: a=8.9076(2) Å, b=10.1258(2) Å, c=10.6785(3) Å; α=72.5250(14)°, β=66.3990(13)°, γ=65.5159(13)°, V=792.74(3) Å3, Z=2 and ρcal=2.466 g cm−3. The refinement of 3760 observed reflections (I>2σ(I)) leads to R1=0.0394 and wR2=0.0755. The structure is characterized by SO42−, HSO4 and H3AsO4 tetrahedra connected by hydrogen bridge to form two types of dimer (H(16)S(3)O4?S(1)O42− and H(12)S(2)O4?H3AsO4). These dimers are interconnected along the [1¯ 1 0] direction by the hydrogen bonds O(3)-H(3)?O(6). They are also linked by the hydrogen bridge assured by the hydrogen atoms H(2), H(3) and H(4) of the H3AsO4 group to build the chain S(1)O4?H3AsO4 which are parallel to the “a” direction. The potassium cations are coordinated by eight oxygen atoms with K-O distance ranging from 2.678(2) to 3.354(2) Å.Crystals of K4(SO4)(HSO4)2(H3AsO4) undergo one endothermic peak at 436 K. This transition detected by differential scanning calorimetry (DSC) is also analyzed by dielectric and conductivity measurements using the impedance spectroscopy techniques. The obtained results show that this transition is protonic by nature.  相似文献   

2.
We have measured the second moment, the linewidth and the relaxation times T1 and T2 of the 1H magnetic resonance signal from 4.2 to 380 K in the fact proton conductors H2Sb4O11·nH2O. Our results reveal that the high ionic conductivity of these materials is due to a Grotthuss-type proton diffusion mechanism with succession of molecular reorientations of H3O+ ions or H2O molecules and of proton jumps from H3O+ to H2O.  相似文献   

3.
This paper reports the assignment of the rotational spectra of the m = 0 and 1 states of 13CC5H6-H2O and C6H5D-H2O dimers. The m = 1 progression was not identified or assigned for both 13CC5H6-H2O and C6H5D-H2O in the earlier work, though for the symmetric isotopomers (C6H6-H2O/D2O/H218O), they were identified [H.S. Gutowsky, T. Emilsson, E. Arunan, J. Chem. Phys. 99 (1993) 4883]. The m = 1 transitions for 13CC5H6-H2O and C6H5D-H2O were split into two, unlike that of the parent C6H6-H2O isotopomer. The splitting varied, somewhat randomly, with quantum numbers J and K. The m = 0 lines of 13CC5H6-H2O had significant overlap with the m = 1 lines of the parent isotopomer, clouding proper assignment, and leading to an rms deviation of about 200 kHz in the earlier work. The general semi-rigid molecular Hamiltonian coupled to an internal rotor, described recently by Duan et al. [Y.B. Duan, H.M. Zhang, K. Takagi, J. Chem. Phys. 104 (1996) 3914], is used in this work to assign both m = 0 and 1 states of 13CC5H6-H2O and C6H5D-H2O dimers. Consequently, the m = 0 fits for 13CC5H6-H2O/D2O have an rms deviation of only 4/7 kHz, comparable to experimental uncertainties. The fits for m = 1 transitions for 13CC5H6-H2O and C6H5D-H2O dimers have an rms deviation of about 200 kHz. However, it is of the same order of magnitude as that of the m = 1 state of the parent C6H6-H2O dimer. The A rotational constants determined from the m = 0 fits for both 13CC5H6-H2O and 13CC5H6-D2O isotopomers are identical and very close to the C rotational constant for 13CC5H6. This provides a direct experimental determination for the C rotational constant of 13CC5H6, which has a negligible dipole moment.  相似文献   

4.
The chemical preparation, the calorimetric studies and the crystal structure are given for two new organic sulfates NH3(CH2)5NH3SO4 1.5H2O (DAP-S) and NH3(CH2)9NH3SO4·H2O (DAN-S). DAP-S is monoclinic P21/n with unit cell dimensions: a=11.9330(2) Å; b=10.9290(2) Å; c=17.5260(2) Å; β=101.873(1)°; V=2236.77(6) Å3; and Z=8. Its atomic arrangement is described as inorganic layers of units and water molecules separated by organic chains. DAN-S is monoclinic P21/c with unit cell parameters: a=5.768(2) Å; b=25.890(10) Å; c=11.177(5) Å; β=115.70(4)°; V=1504.0(11) Å3 and Z=4. Its structure exhibits infinite chains, parallel to the [100] direction where the organic cations are interconnected. In both structures a network of strong and weak hydrogen bonds connects the different components in the building of the crystal.  相似文献   

5.
The monolayer hydrate (MLH) K0.3CoO2·0.4H2O was synthesized from K0.6CoO2 by extracting K+ cations using K2S2O8 as an oxidant and the subsequent intercalation of water between the layers of edge-sharing CoO6 octahedra. A hexagonal structure (space group P63/mmc) with lattice parameters a=2.8262(1) Å, c=13.8269(6) Å similar to the MLH Na0.36CoO2·0.7H2O was established using high-resolution synchrotron X-ray powder diffraction data. The K/H2O layer in the K-MLH is disordered, which is in contrast to the Na-MLH. At low temperatures metallic and paramagnetic behavior was found.  相似文献   

6.
Recently, we have discovered a new type of first order phase transition around 120 K for (n-C3H7)4N[FeIIFeIII(dto)3] (dto=C2O2S2), where the charge transfer transition between FeII and FeIII occurs reversibly. In order to elucidate the origin of this peculiar first order phase transition. Detailed information about the crystal structure is indispensable. We have synthesized the single crystal of (n-C3H7)4N[CoIIFeIII(dto)3] whose crystal structure is isomorphous to that of (n-C3H7)4N[FeIIFeIII(dto)3], and determined its detailed crystal structure. Crystal data: space group P63, a=b=10.044(2) Å, c=15.960(6) Å, α=β=90°, γ=120°, Z=2 (C18H28NS6O6FeCo). In this complex, we found a ferromagnetic transition at Tc=3.5 K. Moreover, on the basis of the crystal data of (n-C3H7)4N[CoIIFeIII(dto)3], we determined the crystal structure of (n-C3H7)4N[FeIIFeIII(dto)3] by simulation of powder X-ray diffraction results.  相似文献   

7.
The solute-solvent interactions of hydrogen-bonded phenol-(H2O)n (n=3-5) clusters in electronic excited states were investigated by means of the time-dependent density functional theory (TDDFT) method. The geometric structures and IR spectra in ground state, S1 state, and T1 state of the clusters, were calculated using the density functional theory (DFT) and TDDFT methods. Only the ring form isomer, the most stable one of the cluster, was considered in this study. Four, five and six intermolecular hydrogen bonds were formed in phenol-(H2O)3, phenol-(H2O)4, and phenol-(H2O)5 clusters, respectively. Based on the analysis of IR spectra, it is revealed that the “window region” between unshifted and shifted absorption bands in both S1 and T1 state becomes broader compared with that in ground state for the corresponding clusters. Furthermore, two interesting phenomenon were observed: (1) with the anticlockwise order of the ring formed by the intermolecular hydrogen bonds in the H-bonded phenol-(H2O)n (n=3-5) clusters, the strengths of the intermolecular hydrogen bonds decrease in all the S0, S1 and T1 states; (2) upon electronic excitation, the smaller the distance between phenol and water is, the larger the change of intermolecular hydrogen bonds strength is. Moreover, the intermolecular hydrogen bond (phenolic OH is the H donor) is strengthened in excited state compared with that in ground state. But the intermolecular hydrogen bond (phenolic OH is the H acceptor) is weakened in excited state.  相似文献   

8.
The heat capacity of the layer compounds tetrachlorobis (n-propylammonium) manganese II and tetrachlorobis (n-propylammonium) cadmium II, (CH3CH2CH2NH3)2MnCl4 and (CH3CH2CH2NH3)2CdCl4 respectively, has been measured over the temperature range 10 K ?T ? 300 K.Two known structural phase transitions were observed for the Mn compound in this temperature region: at T = 112.8 ± 0.1 K (ΔHt= 586 ± 2 J mol?1; ΔSt = 5.47 ± 0.02 J K?1mol?1) and at T =164.3 ± (ΔHt = 496 ± 7 J mol?1; ΔSt =3.29 ± 0.05 J K?1mol?1). The lower transition is known to be from a monoclinic structure to a tetragonal structure, while the upper is from the tetragonal phase to an orthorhombic one. From comparison with the results for the corresponding methyl Mn compound it is deduced that the lower transition primarily involves changes in H-bonding while the upper transition involves motion in the propyl chain.A new structural phase transition was observed in the Cd compound at T= 105.5 ± 0.1 K (ΔHt= 1472.3 ± 0.1 J mol?1; ΔSt = 13.956 ± 0.001 J K?1mol?1), in addition to two transitions that have been observed previously by other techniques. The higher of these transitions(T = 178.7 ± 0.3 K; ΔHt = 982 ± 4 J mol?1 ΔSt = 6.16 ± 0.02 J K? mol?1) is known to be between two orthorhombic structures, while the structural changes at the lower transition (T= 156.8 ± 0.2 K; ΔHt = 598 ± 5 J mol?1, ΔSt = 3.85 ± 0.03 J K?1 mol?1) and at the new transition are not known. It is proposed that these two transitions correspond respectively to the tetragonal to orthorhombic and monoclinic to tetragonal transitions in the propyl Mn compounds.In addition to the structural phase transitions (CH3CH2CH2NH3)2MnCl4 magnetically orders at t? 130 K. The magnetic contribution to the heat capacity is deduced from the heat capacity of the corresponding diamagnetic Cd compound and is of the form expected for a quasi 2-dimensional Heisenberg antiferromagnet.  相似文献   

9.
The multiferroic (PMN-PT/CFO)n (n = 1,2) multilayered thin films have been prepared on SiO2/Si(1 0 0) substrate with LNO as buffer layer via a rf magnetron sputtering method. The structure and surface morphology of multilayered thin films were determined by X-ray diffraction (XRD) and atom force microscopy (AFM), respectively. The smooth, dense and crack-free surface shows the excellent crystal quality with root-mean-square (RMS) roughness only 2.9 nm, and average grain size of CFO thin films on the surface is about 44 nm. The influence of the thin films thickness size, periodicity n and crystallite orientation on their properties including ferroelectric, ferromagnetic properties in the (PMN-PT/CFO)n multilayered thin films were investigated. For multilayered thin films with n = 1 and n = 2, the remanent polarization Pr are 17.9 μC/cm2 and 9.9 μC/cm2; the coercivity Hc are 1044 Oe and 660 Oe, respectively. In addition, the relative mechanism are also discussed.  相似文献   

10.
《Solid State Ionics》1988,26(2):63-69
Layered phosphonate salts of divalent metal ions (Mg, Ca and Mn) are prepared by combining solutions of soluble metal salts and alkyl- or arylphosphonic acids. In this way the compounds Mg(O3PCnH2n+1)·H2O (n=1−12), Mg(O3PC6H5)·H2O, Mg(HO3PCH(C6H5)2)2·8 H2O, Mn(O3PCH3)·H2O, Mn(O3PC6H5)·H2O, Ca(O3PCnH2n+1)·H2O (n⩽5), Ca(HO3PC6H5)2 and Ca(HO3PCnH2n+1)2 (n⩾6) were prepared. The M(O3PC6H5)·H2O compounds show good thermal stability, losing lattice water at 250–300°C without further decomposition below 550°C. Compounds derived from alkylphosphonic acids decompose at lower temperatures. The Mg(O3PCnH2n+1)·H2O series, Mg(O3PC6H5)·H2O, and Mn(O3PC6H5)·H2O group Pmn21; for the latter compound unit cell dimensions (Å) are a=5.733, b=14.298, c=4.931. The structure consists of roughly coplanar layers of metal atoms coordinated by phenylphosphonate groups above and below. Each metal atom is coordinated by five phosphonate oxygens and one lattice water molecule. Mg(O3PCnH2n+1·H2O adopts a similar structure; infrared spectra indicate all-trans alkyl chains. In Mg(HO3PCH(C6H5)2)2·8 H2O, Mg(H2O)2+6 ions and lattice water lie in hydrogen-bonded sheets; the benzhydryl groups lie above and below and make van-der-Waals contacts between layers.  相似文献   

11.
The velocity dependence for the ionization of H2O and D2O to form H2O+ and D2O+ in collisions with both 23S and 21S metastable helium atoms has been measured in a crossed molecular beam apparatus using a mechanical velocity-selector on the metastable beam. The cross-sections are found to be proportional to the —n power of the relative collision energy, with n ? 0.4 for both metastable atoms in both gases. The branching ratios H2O+/OH+ and D2O+/OD+ were both found to be 4.3 for both metastable helium atoms, and to be independent of the relative collision energy.  相似文献   

12.
Using the 2,5-bis(2-pyridyl)-1,3,4-thiadiazole (bptd), we recently prepared [Cu2(bptd) (H2O) Cl4] and [Ni2(bptd)2 (H2O)4] Cl4, 3H2O in which the magnetic centres are connected through one diazine+one chloro and two diazine ligand bridges, respectively. These two compounds are the first examples that show null intramolecular magnetic interactions despite M-M distances close to 3.7 Å within perfectly planar edifices:Down to , [Cu2(bptd)Cl4(H2O)] is paramagnetic while, below Tt, half of the Cu2+ions interact, leading to residual paramagnetism of one Cu2+/f.u. Magnetic susceptibility measurements, EPR and pulsed EPR study indicate the original intermolecular nature of AF exchanges.[Ni2(bptd)2(H2O)4]Cl4·3H2O susceptibility obeys a Curie-law involving pure paramagnetism. Moreover, its EPR spectrum can be interpreted on the basis of virtual S=1 monomers. Below 70 K, Zero Field Splitting (D∼275 G) due to dipolar interactions without magnetic exchanges could be responsible for the LT spectra splitting. For both compounds, the thia role is suggested as partially responsible for the null-in-plane magnetic exchanges.  相似文献   

13.
The CO2-broadened water coefficients (half-widths, line shifts, and temperature dependence of the widths) are predicted using a fully complex Robert-Bonamy formulation for the 937 allowed and forbidden perpendicular type transitions of (000)-(000) between 200 and 900 cm−1 in order to facilitate atmospheric remote sensing of Mars and Venus. In addition, empirical Lorentz line widths and pressure-induced frequency-shifts of CO2-broadened H216O are obtained at room temperature for 257 perpendicular transitions of the (010)-(000) fundamental. For this, calibrated spectra recorded at 0.0054 cm−1 resolution are measured assuming Voigt line shapes. For transitions between 1287 and 1988 cm−1 with rotational quanta up to J = 13 and Ka = 6, the widths vary from 0.045 to 0.212 cm−1 atm−1 at 300 K; the pressure-shifts are quite large and range from −0.0386 to +0.0436 cm−1 atm−1. For the (010)-(000) band, the RMS and mean observed and calculated differences for CO2-broadened H2O half-widths are 12% and −1.9%, respectively, while the RMS and mean ratios of the observed and calculated pressure-induced shift coefficients are 1.6 and 0.79, respectively. For pairs of transitions involving Ka = 0 and 1, such as 20 2 ← 31 3 and 31 3 ← 20 2, both the calculated and observed pressure induced shifts in positions are opposite in sign and often similar in magnitude. The data are too limited to characterize vibrational dependencies of the widths, however.  相似文献   

14.
The vibrational spectra of Eu[Co(CN)6]·4H2O and luminescence spectra of Eu3+ in this compound, using 355 nm excitation at temperatures down to 10 K, have been assigned. A clear distinction is made between the n=5 and 4 members of the Ln[M(CN)6nH2O series from the vibrational spectra. The electronic spectra show prominent vibronic structures, particularly for the 5D07F2 sideband. A resonance occurs between the transitions 5D07F1(III) and 5D07F0+ν(Eu−N). A crystal field analysis of the derived energy data set is presented for Eu3+ in eight coordination geometry.  相似文献   

15.
This paper describes the synthesis and characterization of self-assembled organic-inorganic layered perovskite compounds, (C6H5-CnH2n-NH3)2PbBr4 (n=1-4). the effect of the number of carbon atoms of the alkyl chain length (n) on optical properties has been studied. (C6H5-CnH2n-NH3)2PbBr4 films fabricated by spin-coating are microcrystalline form, single phase and oriented with the c-axis. Crystallinity, the maximum PL intensity and the lifetime of exciton emissions varied with the number of carbon atoms. the lowest-energy exciton splits into a few fine-structure levels at low temperatures. Time-resolved photoluminescence spectra reveal that (C6H5-CnH2n-NH3)2PbBr4 shows both singlet and triplet excitons. with decreasing temperature, triplet exciton emissions become dominant for (C6H5-CnH2n-NH3)2PbBr4 (n=1-3), while (C6H5-C4H8-NH3)2PbBr4 shows mainly singlet exciton emissions. The intersystem crossing from excited singlet state to triplet state plays an important role in the relaxation process of excitons.  相似文献   

16.
The intensities of about 90 lines of the ν1 + ν2 and ν2 + ν3 bands of H218O have been measured using a Fourier transform spectrum of natural water vapor. The constants involved in the rotational expansion of the transformed transition moment operators corresponding to these bands have been determined through a fit of these line intensities. The constants obtained are used to compute the whole spectrum of the ν1 + ν2 and ν2 + ν3 bands of H218O providing reliable line positions and intensities. For lines involving perturbed levels a comparison is given with the results obtained for H216O and it is shown that the results for one isotopic species cannot be transferred directly to another one.  相似文献   

17.
Chemical preparation, calorimetric studies, crystal structure and spectroscopic investigations are given for a new noncentrosymmetric organic cation monophosphate [2,5-(CH3)2C6H3NH3]H2PO4. This compound is orthorhombic P212121 with the following unit-cell parameters: a=5.872(4), b=20.984(3), c=8.465(1) Å, Z=4, V=1043.0(5) Å3 and Dx=1.396 g cm−3. Crystal structure has been solved and refined to R=0.048 using 2526 independent reflections. Structure can be described as an inorganic layer parallel to (a,b) planes between which organic groups [2,5-(CH3)2C6H3NH3]+ are located. Multiple hydrogen bonds connecting the different entities of compound thrust upon three-dimensional network a noncentrosymmetric configuration.  相似文献   

18.
Chemical preparation and crystal structure are given for a new cyclotetraphosphate: [3,5-(CH3)2C6H3NH3]4P4O12·3H2O. This compound is triclinic P with the following unit-cell parameters: a=8.298(3), b=8.299(3), c=17.242(7)Å, α=97.13(3), β=102.72(3), γ=64.55(3)°, Z=1 and V=1045.2(8)Å3. The crystal structure has been solved and refined to R=0.040 using 6086 independent reflections. The atomic arrangement can be described as layers organization. Layers built by P4O12 ring anions, ammonium groups and water molecules parallel to the plan (001), between which the organic groups are located. Characterization by X-ray diffraction, IR absorption, and thermal analysis are described.  相似文献   

19.
The thermal decomposition of M(OH)3 (M=Y, La, Nd, Sm, Gd) with the Y(OH)3 structure was examined by the TG and DTA methods. Y(OH)3, Nd(OH)3, and Sm(OH)3 decomposed to MOOH and then to M2O3. The decomposition of La(OH)3 and Gd(OH)3 occurred via the following schemes: La(OH)3→LaOOH→La2O3·1/2H2O→La2O3, and Gd(OH)3→Gd2O3·3/2H2O→GdOOH→Gd2O3. The highest conductivity of 5.9×1o?9Scm?1 at 250°C was found in Gd(OH)3 and that of 8.9×10?7 S cm?1 400°C in GdOOH. The continuous-wave 1H NMR absorption spectrum of LaOOH at room temperature exhibited no doublet line shape. This shows that protons are magnetically isolated from each other, and very little H2O and H3O+ can exist.  相似文献   

20.
Electron energy peak shifts and peak shapes were determined in the ionization of H2O, D2O, H2S and SO2 by Ne(3P2) and He(21S, 23S) metastable atoms. The shifts are large, especially in ionization of H2O and D2O into the ionic ground state and are probably mostly due to chemical interaction during the collision.In a previous paper the electron energy distribution curves for ionization of CO, HCl, HBr, N2O, NO2, CO2, COS and CS2 by helium, neon and argon metastables and the characteristics of this ionization were described1. In this paper the series of triatomic molecules was extended to the molecules H2O, D2O, H2S and SO2. Because all these molecules have considerable dipole moments it could be expected that the peak shifts might be enhanced as compared with other triatomic molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号