首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper we are constructing a recurrence relation of the form
i=0rωi(k)mk+i{λ} [f] = ω(k)
for integrals (called modified moments)
mk{λ}[f]df=?11 f(x)Ck(λ)(x)dx (k = 0,1,…)
in which Ck(λ) is the k-th Gegenbauer polynomial of order λ(λ > ?12), and f is a function satisfying the differential equation
i=0n Pi(x)f(i)(x) = p(x) (?1?x?1)
of order n, where p0, p1, …, pn ? 0 are polynomials, and mkλ[p] is known for every k. We give three methods of construction of such a recurrence relation. The first of them (called Method I) is optimum in a certain sense.  相似文献   

2.
Given a set S of positive integers let ZkS(t) denote the number of k-tuples 〈m1, …, mk〉 for which mi ∈ S ? [1, t] and (m1, …, mk) = 1. Also let PkS(n) denote the probability that k integers, chosen at random from S ? [1, n], are relatively prime. It is shown that if P = {p1, …, pr} is a finite set of primes and S = {m : (m, p1pr) = 1}, then ZkS(t) = (td(S))k Πν?P(1 ? 1pk) + O(tk?1) if k ≥ 3 and Z2S(t) = (td(S))2 Πp?P(1 ? 1p2) + O(t log t) where d(S) denotes the natural density of S. From this result it follows immediately that PkS(n) → Πp?P(1 ? 1pk) = (ζ(k))?1 Πp∈P(1 ? 1pk)?1 as n → ∞. This result generalizes an earlier result of the author's where P = ? and S is then the whole set of positive integers. It is also shown that if S = {p1x1prxr : xi = 0, 1, 2,…}, then PkS(n) → 0 as n → ∞.  相似文献   

3.
Let A(x,ε) be an n×n matrix function holomorphic for |x|?x0, 0<ε?ε0, and possessing, uniformly in x, an asymptotic expansion A(x,ε)?Σr=0Ar(x) εr, as ε→0+. An invertible, holomorphic matrix function P(x,ε) with an asymptotic expansion P(x,ε)?Σr=0Pr(x)εr, as ε→0+, is constructed, such that the transformation y = P(x,ε)z takes the differential equation εhdydx = A(x,ε)y,h a positive integer, into εhdzdx = B(x,ε)z, where B(x,ε) is asymptotically equal, to all orders, to a matrix in a canonical form for holomorphic matrices due to V.I. Arnold.  相似文献   

4.
It is proved that Wigner's semicircle law for the distribution of eigenvalues of random matrices, which is important in the statistical theory of energy levels of heavy nuclei, possesses the following completely deterministic version. Let An=(aij), 1?i, ?n, be the nth section of an infinite Hermitian matrix, {λ(n)}1?k?n its eigenvalues, and {uk(n)}1?k?n the corresponding (orthonormalized column) eigenvectors. Let v1n=(an1,an2,?,an,n?1), put
Xn(t)=[n(n-1)]-12k=1[(n-1)t]|vn1uf(n-1)|2,0?t?1
(bookeeping function for the length of the projections of the new row v1n of An onto the eigenvectors of the preceding matrix An?1), and let finally
Fn(x)=n-1(number of λk(n)?xn,1?k?n)
(empirical distribution function of the eigenvalues of Ann. Suppose (i) limnannn=0, (ii) limnXn(t)=Ct(0<C<∞,0?t?1). Then
Fn?W(·,C)(n→∞)
,where W is absolutely continuous with (semicircle) density
w(x,C)=(2Cπ)-1(4C-x212for|x|?2C0for|x|?2C
  相似文献   

5.
6.
The message m = {m(t)} is a Gaussian process that is to be transmitted through the white Gaussian channel with feedback: Y(t) = ∫0tF(s, Y0s, m)ds + W(t). Under the average power constraint, E[F2(s, Y0s, m)] ≤ P0, we construct causally the optimal coding, in the sense that the mutual information It(m, Y) between the message m and the channel output Y (up to t) is maximized. The optimal coding is presented by Y(t) = ∫0t A(s)[m(s) ? m?(s)] ds + W(t), where m?(s) = E[m(s) ¦ Y(u), 0 ≤ u ≤ s] and A(s) is a positive function such that A2(s) E |m(s) ? m?(s)|2 = P0.  相似文献   

7.
We improve several results published from 1950 up to 1982 on matrix functions commuting with their derivative, and establish two results of general interest. The first one gives a condition for a finite-dimensional vector subspace E(t) of a normed space not to depend on t, when t varies in a normed space. The second one asserts that if A is a matrix function, defined on a set ?, of the form A(t)= U diag(B1(t),…,Bp(t)) U-1, t ∈ ?, and if each matrix function Bk has the polynomial form
Bk(t)=i=0αkfki(t)Cki, t∈ ?, k∈{1,…,p}
then A itself has the polynomial form
A(t)=i=0d?1fi(t)Ci,t∈?
, where
d=k=1pdk
, dk being the degree of the minimal polynomial of the matrix Ck, for every k ∈ {1,…,p}.  相似文献   

8.
9.
Results on partition of energy and on energy decay are derived for solutions of the Cauchy problem ?u?t + ∑j = 1n Aj?u?xj = 0, u(0, x) = ?(x). Here the Aj's are constant, k × k Hermitian matrices, x = (x1,…, xn), t represents time, and u = u(t, x) is a k-vector. It is shown that the energy of Mu approaches a limit EM(?) as ¦ t ¦ → ∞, where M is an arbitrary matrix; that there exists a sufficiently large subspace of data ?, which is invariant under the solution group U0(t) and such that U0(t)? = 0 for ¦ x ¦ ? a ¦ t ¦ ? R, a and R depending on ? and that the local energy of nonstatic solutions decays as ¦ t ¦ → ∞. More refined results on energy decay are also given and the existence of wave operators is established, considering a perturbed equation E(x) ?u?t + ∑j = 1n Aj?u?xj = 0, where ¦ E(x) ? I ¦ = O(¦ x ¦?1 ? ?) at infinity.  相似文献   

10.
Let Ω be a simply connected domain in the complex plane, and A(Ωn), the space of functions which are defined and analytic on Ωn, if K is the operator on elements u(t, a1, …, an) of A(Ωn + 1) defined in terms of the kernels ki(t, s, a1, …, an) in A(Ωn + 2) by Ku = ∑i = 1naitk i(t, s, a1, …, an) u(s, a1, …, an) ds ? A(Ωn + 1) and I is the identity operator on A(Ωn + 1), then the operator I ? K may be factored in the form (I ? K)(M ? W) = (I ? ΠK)(M ? ΠW). Here, W is an operator on A(Ωn + 1) defined in terms of a kernel w(t, s, a1, …, an) in A(Ωn + 2) by Wu = ∝antw(t, s, a1, …, an) u(s, a1, …, an) ds. ΠW is the operator; ΠWu = ∝an ? 1w(t, s, a1, …, an) u(s, a1, …, an) ds. ΠK is the operator; ΠKu = ∑i = 1n ? 1aitki(t, s, a1, …, an) ds + ∝an ? 1tkn(t, s, a1, …, an) u(s, a1, …, an) ds. The operator M is of the form m(t, a1, …, an)I, where m ? A(Ωn + 1) and maps elements of A(Ωn + 1) into itself by multiplication. The function m is uniquely derived from K in the following manner. The operator K defines an operator K1 on functions u in A(Ωn + 2), by K1u = ∑i = 1n ? 1ait ki(t, s, a1, …, an) u(s, a, …, an + 1) ds + ∝an + 1t kn(t, s, a1, …, an) u((s, a1, …, an + 1) ds. A determinant δ(I ? K1) of the operator I ? K1 is defined as an element m1(t, a1, …, an + 1) of A(Ωn + 2). This is mapped into A(Ωn + 1) by setting an + 1 = t to give m(t, a1, …, an). The operator I ? ΠK may be factored in similar fashion, giving rise to a chain factorization of I ? K. In some cases all the matrix kernels ki defining K are separable in the sense that ki(t, s, a1, …, an) = Pi(t, a1, …, an) Qi(s, a1, …, an), where Pi is a 1 × pi matrix and Qi is a pi × 1 matrix, each with elements in A(Ωn + 1), explicit formulas are given for the kernels of the factors W. The various results are stated in a form allowing immediate extension to the vector-matrix case.  相似文献   

11.
For any partially ordered set P, let dk(P)(d?k(P)) denote the cardinality of the largest subset of P obtained by taking the union of k antichains (chains). Then there exists a partition Δ = {Δl ? Δ2 > … ? Δl} of | P | such that dk(P) = Δ1 + Δ2 + … + Δk and d?k(P) = Δ11 + Δ21 + … + Δk1 for each k, where Δ1 denotes the partition conjugate to Δ. This result can be used to prove a general class of “Dilworth-type” theorems for subfamilies of P.  相似文献   

12.
In two party elections with popular vote ratio pq, 12≤p=1 ?q, a theoretical model suggests replacing the so-called MacMahon cube law approximation (pq)3, for the ratio PQ of candidates elected, by the ratio ?k(p)?k(q) of the two half sums in the binomial expansion of (p+q)2k+1 for some k. This ratio is nearly (pq)3 when k = 6. The success probability gk(p)=(pa(pa+qa) for the power law (pq)a?PQ is shown to so closely approximate ?k(p)=Σ0k(r2k+1)p2k+1?rqr, if we choose a = ak=(2k+1)!4kk!k!, that 1≤?k(p)gk(p)≤1.01884086 for k≥1 if12≤p≤1. Computationally, we avoid large binomial coefficients in computing ?k(p) for k>22 by expressing 2?k(p)?1 as the sum (p?q) Σ0k(4pq)sas(2s+1), whose terms decrease by the factors (4pq)(1?12s). Setting K = 4k+3, we compute ak for the large k using a continued fraction πak2=K+12(2K+32(2K+52(2K+…))) derived from the ratio of π to the finite Wallis product approximation.  相似文献   

13.
For nonlinear retarded differential equations y2n(t)?i=1mfi(t,y(t),y(gi(t)))=0 and yn(t)?i=1mPi(t)Fi(y(gi(t)))=h(t), the sufficient conditions are given on fi, pi, Fi, and h under which every bounded nonoscillatory solution of (1) or (7) tends to zero as t → ∞.  相似文献   

14.
In 1965, Chowla and Walum conjectured that, Ga,k(x):= Σn ≤ √x na Pk(xn) = O(xa2 + 14 + ε) holds for each ε > 0 and x → ∞, where integers a ≥ 0 and k ≥ 1 are given and Pk is the periodic Bernoulli function of order k. Recently, the authors established this conjecture in case k ≥ 2 and a > 12 with ε = 0 while if a = 12, with a log factor. In this paper, it is proven that the conjecture, in case |a| < 12, k = 2, is true “on average”.  相似文献   

15.
Let S be a Dirichlet form in L2(Ω; m), where Ω is an open subset of Rn, n ? 2, and m a Radon measure on Ω; for each integer k with 1 ? k < n, let Sk be a Dirichlet form on some k-dimensional submanifold Ωk of Ω. The paper is devoted to the study of the closability of the forms E with domain C0(Ω) and defined by: (?,g)=E(?, g)+ ip=1Eki(?ki, gki) where 1 ? kp < ? < n, and where ?ki, gki denote restrictions of ?, g in C0(Ω) to Ωki. Conditions are given for E to be closable if, for each i = 1,…, p, one has ki = n ? i. Other conditions are given for E to be nonclosable if, for some i, ki < n ? i.  相似文献   

16.
Let Lu be the integral operator defined by (Lk?)(x, y) = ∝ s ∝ ?(x′, y′)(eik??) dx′ dy′, (x, y) ? S where S is the interior of a smooth, closed Jordan curve in the plane, k is a complex number with Re k ? 0, Im k ? 0, and ?2 = (x ?x′)2 + (y ? y′)2. We define q(x, y) = [dist((x, y), ?S)]12, (x, y) ? S; L2(q, S) = {? : ∝ s ∝ ¦ ?(x, y)¦2 q(x, y) dx dy < ∞}; W21(q, S) = {? : ? ? L2(q, S), ???x, ?f?y ? L2(q, S)}, where in the definition of W21(q, S) the derivatives are taken in the sense of distributions. We prove that Lk is a continuous 1-l mapping of L2(q, S) onto W21(q, S).  相似文献   

17.
Let k and r be fixed integers such that 1 < r < k. Any positive integer n of the form n = akb, where b is r-free, is called a (k, r)-integer. In this paper we prove that if Qk,r(x) denotes the number of (k, r)-integers ≤ x, then Qk,r(x) = xζ(k)ζ(r) + Δk,r(x), where Δk,r(x) = O(x1rexp [?Blog35x (log log x)?15]), B being a positive constant depending on r and the O-estimate is uniform in k. On the assumption of the Riemann hypothesis, we improve the above order estimate of Δk,r(x) and prove that
1x1αδk,r(t)dt=0(x1kω(x))or0(x3/(4r+1)ω(x))
, according as k ≤ (4r + 1)3 or k > (4r + 1)3, where ω(x) = exp [B log x(log log x)?1].  相似文献   

18.
Let m and vt, 0 ? t ? 2π be measures on T = [0, 2π] with m smooth. Consider the direct integral H = ⊕L2(vt) dm(t) and the operator (L?)(t, λ) = e?iλ?(t, λ) ? 2e?iλtT ?(s, x) e(s, t) dvs(x) dm(s) on H, where e(s, t) = exp ∫stTdvλ(θ) dm(λ). Let μt be the measure defined by T?(x) dμt(x) = ∫0tT ?(x) dvs dm(s) for all continuous ?, and let ?t(z) = exp[?∫ (e + z)(e ? z)?1t(gq)]. Call {vt} regular iff for all t, ¦?t(e)¦ = ¦?(e for 1 a.e.  相似文献   

19.
In this paper we study the linked nonlinear multiparameter system
yrn(Xr) + MrYr + s=1k λs(ars(Xr) + Prs) Yr(Xr) = 0, r = l,…, k
, where xr? [ar, br], yr is subject to Sturm-Liouville boundary conditions, and the continuous functions ars satisfy ¦ A ¦ (x) = detars(xr) > 0. Conditions on the polynomial operators Mr, Prs are produced which guarantee a sequence of eigenfunctions for this problem yn(x) = Πr=1kyrn(xr), n ? 1, which form a basis in L2([a, b], ¦ A ¦). Here [a, b] = [a1, b1 × … × [ak, bk].  相似文献   

20.
It is shown that the compositional inverse of either of two transformations of a given series can be determined from the compositional inverse of the series. Specifically, if t · f(t) and t · g(t) are compositional inverses, then so are t · fk(t) and t · gk1(t), where fk(t) is the kth Euler transformation of f(t) and gk1(t) = g(t)(1 ? kt · g(t)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号