首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sequential pump and probe pulses are used to excite state-selected EBX transitions in I2 vapor, and the EB bands recorded by polarization-labeling spectroscopy at relatively high dispersion. Molecular constants and Dunham expansion coefficients Yn,0 (n = 0–7), Yn,1 (n = 0–3), and Yn,2 (n = 0, 1) for the E state are obtained in the range 0 ≤ vE ≤ 96, based on a global least-squares fit of 1050 assigned rotational transitions. Definite evidence is cited to show that the EOg+ ion-pair state correlates diabatically with the ground state I?(1S0) + I+(3P2) of the separated ions.  相似文献   

2.
An optical-optical double-resonance technique has been applied to study the D(0u+) ion-pair state of Br2 in a one-photon resonant three-photon absorption. The OODR transition proceeds through the high vibrational level of the B3Π(0u+) state, which compromises a large Franck-Condon shift required for the excitation of Br2 from the X1Σg+ state to the D(0u+) state. Dunham parameters of the D(0u+) state, based on a global least-squares fit of 407 transitions (v′ = 0–16, J′ = 17–115), are Y00 = 49928.443(41), Y10 = 134.467(19), Y20 = ?8.71(27) × 10?2, Y30 = ?3.36(10) × 10?3, Y01 = 4.2382(15) × 10?2, Y11 = ?1.061(36) × 10?4, Y21 = ?2.00(27) × 10?6, and Y02 = ?1.93(11) × 10?8 for 79Br2 (all in cm?1, and 3σ in parentheses). The single rovibronic fluorescence spectrum of the D(0u+) state shows a transition terminating on the X1Σg+ ground state, and establishes the absolute v′ numbering on the basis of the Franck-Condon factor calculations. The v′ = 2 and 3 levels of the D(0u+) state are strongly perturbed due to the heterogeneous interaction with the 1u state correlating with the same ionic products of the D(0u+) state at the dissociation limit, Br?(1S) + Br+(3P2).  相似文献   

3.
The E-B (0g+-0u+) band system of Br2 has been investigated at Doppler-limited resolution using polarization labeling spectroscopy. Merged E state data for the three naturally occurring isotopes in the range vE = 0–16, expressed in terms of the constants for 79Br2, are (in cm?1) Y0,0 = 49 777.962(54), Y1,0 = 150.834(22), Y2,0 = ?0.4182(28), Y3,0 = 6.6(11) × 10?4, Y0,1 = 4.1876(28) × 10?2, Y1,1 = ?1.607(16) × 10?4, and Y0,2 = 1.39(39) × 10?8. The bond distance is re = 3.194 A?, and the diabatic dissociation energy to Br+(3P2) + Br?(1S0) is 34 700 cm?1.  相似文献   

4.
5.
A three-loop calculation is presented for the jet multiplicity of produced slightly-off-shell gluons for a pure Yang-Mills theory. Planar and non-planar graphs are found to be equally important in an axial gauge. If the three-loop calculation is indicative of what happens at higher orders n(Q2) ∝ exp {[(2CAπb) 1n Q2]12} where CA = 3 and b = (33 ? 2nf)12π in QCD.  相似文献   

6.
In this note we determine the oscillator strengths for the dipole absorption of neutral bound excitons in direct gap semiconductors, using our previously obtained 35-term Page and Fraser type wave function, and taking into account the detailed electronic structure as well as the electron-hole exchange interaction.The envelope part of the oscillator strengths varies considerably with the electron-hole mass ratio σ = m1em1h, and is maximum for the (D0, X)- complex when σ = 0.4. For typical σ-values (σ? 0.1–0.2), ?(D0,X) ? 10?(A0,X). But when σ approaches zero, the overlapping of the electron and the hole envelope wave functions of the (A0,X)-complex decreases progressively so that the oscillator strength also decreases and tends to zero.In the case of zinc-blende materials (Td) and positive spin-orbit coupling at k = 0, we confirm that the line strength for transitions to or from J = 126) or J = 527 + Γ8) level of the (A0, X)-complex is equal to one quarter of the line strength to or from the J = 328) level.In the case of CdS, where our computed values are only in qualitative agreement with the experimental values, we discuss the use of the phenomenological result of Rashba.  相似文献   

7.
The resonant 2-photon E(O+g) ← B(O+g) ← X(O+g) transition of I2 vapor has been studied by polarization spectroscopy, leading to a rotational analysis of the ν = 0–15 vibrational levels of the E state. The principal constants determined are Be = 19.9738(42) × 10-3, αe = 5.602(84) × 10-5, γe = 1.02(41) × 10-7, DeJ = 3.040(74) × 10-9cm-1, and re = 3.6470(5) A?.  相似文献   

8.
9.
The chemiluminescence spectrum of atomic Pb reacting with O3 under single-collision conditions includes a series of 55 bands in the regions 450–850 nm. A vibrational analysis is obtained which shows emission is to the ground state of PbO from excited electronic states not previously analyzed. Forty-nine of the bands are assigned to the a(1)-X(0+) transition and the remaining six are tentatively identified as the forbidden b(0?)-X(0+) transition. Both the a and b states are believed to be Hund's case (c) components of the 3Σ+ states arising from the configuration σ2π3π1. The vibrational parameters of the a state are ν4 = 16 029 ± 8, ωe = 478.7 ± 1.9, and ωexe = 2.292 ± 0.128 cm?1, where the uncertainties represent two standard deviations of the least-squares fit. Emission is also observed from the PbO B state produced in the reaction of metastable Pb atoms with O3. Using pulsed laser excitation, an attempt is made to determine radiative lifetimes. We find for the PbO A(0+) state τ = 3.74 ± 0.3 μsec, and for the PbO B(1) state τ = 2.58 ± 0.3 μsec, while for the a(1) state τ is estimated to be greater than 10 μsec. From the vibrational analysis, energy conservation arguments place a lower limits to the ground state dissociation energy of D00(PbO) ≥ 3.74 ± 0.03 eV (86.2 ± 0.7 kcal/mole). For the Pb + O3 reaction we find less than 1% of the products are PbO1 molecules that emit in the visible. Correlations are made with the low-lying states of other Group IV chalconides based on the assignment of the PbO a 3Σ+(1) state and the correspondence between the low-lying triplet states of PbO and CO.  相似文献   

10.
Based on the proper connected diagram expansion, we calculated cyclotron resonance widths Γn associated with neighboring Landau states (n, n +1) for free electrons in interaction with more than one kind of impurities. In 3D usual Matthiessen's rule Γn=Γ(1)n+Γ(2)n+…where Γ(i)n represent widths calculated separately for each kind, is obtained. In 2D a new rule: Γn=[Γ(1)2n(2)2n+…]12 is obtained.  相似文献   

11.
A weak emission spectrum of I2 near 2770 Å is reanalyzed and found to to minate on the A(1u3Π) state. The assigned bands span v″ levels 5–19 and v′ levels 0–8. The new assignment is corroborated by isotope shifts, band profile simulations, and Franck-Condon calculations. The excited state is an ion-pair state, probably the 1g state which tends toward I?(1S) + I+(3P1). In combination with other results for the A state, the analysis yields the following spectroscopic constants: Te = 10 907 cm?1, De = 1640 cm?1, ωe = 95 cm?1, R″e = 3.06 A?; Te = 47 559.1 cm?1, ωe = 106.60 cm?1, R′e = 3.53 A?.  相似文献   

12.
It is shown that under quite general assumptions on the operators A1,…,An (unbounded, symmetric) and on the domain D on the realization P(A1,…,An) of the algebra of polynomials P(x1,…,xn), the strongest locally convex topology τst coincides with the uniform topology τD as well as with the strong operator topology τs. In the case n = 2 some conditions are given, under which these general assumptions are fulfilled.  相似文献   

13.
Literature data for the line frequencies of the B3Π(0u+) ← X1Σg+ transition of Cl2 are fitted directly by least squares to obtain new molecular constants. The constants from individual bands are merged to obtain single-valued estimates of the rotational constants for each vibrational level of the B state. The results are combined with recent data from the BX system in emission to obtain new RKR turning points for the B and X states, and Franck-Condon factors for the B-X system. The new constants are also used to provide revised long-range parameters for Cl2(B) which differ from those of earlier work. In particular, the coefficient C5 of the leading term in the inverse-power long-range potential is now found to be C5 = 1.16(2) × 105A?5 cm?1. Theoretical results for the variation of centrifugal distortion parameters for levels near dissociation are tested for Dv and Hv, and an extrapolation based on this behavior is used to facilitate determination of reliable Bv and G(v) values for the highest observed B-state levels.  相似文献   

14.
The 440-nm violet-degraded 2Σ → 2Π bands of SiN, which were previously assigned to a “K” → A system, have been reanalyzed. These bands are shown to be Δv = 0, ±1 sequence bands of the B2Σ+A2Π system of SiN. The first reliable value of Te(A2Π) = 994.4(1) cm?1 has been obtained, and this determines the location of the D2Π and L2Π states with respect to the ground state. The B2Σ+, v = 7 and D2Π, v = 3 levels are shown to be mutually perturbing. A detailed study has been made of the perturbed X2Σ+, v = 8 level. The 6–8 band of the BX system has been photographed at high resolution. A deperturbation of this band confirms Te(A2Π), and provides the first experimental verification of the inverted nature of the A state.  相似文献   

15.
Turning points of the vibrating SiS molecule in the D1Π and X1Σ+ electronic states are evaluated using R-K-R-V method. Franck-Condon (FC) factors and r-centroids are computed for the (D1Π?X1Σ+) transition of the molecule using wavefunctions appropriate to R-K-R-V potential energy curves. The results of the FC-factors vary in accordance with the estimated intensities and also satisfy the vibrational sum rule. The sequence difference Δr remains approximately constant in the computed r-centroids.  相似文献   

16.
From the angular distributions of γ-rays emitted by oriented 129gTe and 129mTe nuclei implanted in iron by isotope separator, unique spin assignments could be made for the excited states of 129I at 487.4 keV (52+), 696.0 keV (112+), 729.6 keV (92+), 768.9 keV (72+), 1050.4 keV (72+) and 1111.8 keV (52+). In addition, E2/M1 amplitude ratios for the following 129I γ-rays (energies are in keV) are derived: δ(459.6) = ?(0.076+0.037?0.148); δ(487.4) = 0.50+0.17?0.10 or δ? = 0.35+0.15?0.09; δ(556.7) = 0.06±0.02 or δ? = ?(0.10±0.02); δ(624.4) = 0.10±0.26 or δ? > 0.4; the 696.0 keV γ-ray is pure E2; δ(729.6) = ?(0.34±0.06) or δ?1 = 0.55±0.05; δ(741.1) = ?(0.27±0.10) or δ?1 = ?(0.43±0.12); δ(817.2) = 0.46±0.04 or δ?1 =0.20±0.03 if Iπ (845 keV) = 72+; δ(1022.6) = ?(0.02 ±0.02) or δ?1 = ?(0.23±0.02); δ(1084) = 0.56 +0.04?0.14; δ(1111.8) = 0.06±0.05 or δ?1 = ?(0.08±0.05). The anisotropy of the 531.8 keV γ-ray excludes 12+ as a possible spin assignment for the 559.6 keV level, so that no 12+ level is fed in the decay from 129Te. Anisotropies for the 209, 250.7, 278.4 and 281.1 keV γ-rays are also measured. Comparison of the level scheme is made with theoretical predictions from both the pairing-plus-quadrupole model and the intermediate coupling unified model.  相似文献   

17.
18.
In this paper we consider a product of n complex m×m matrices Ak (k=1,…,n) with singular values ∝(k)i ordered in decreasing magnitude. Using the spectral resolution for the operators Adagger;kAk, it is shown that |TrA1…An|≤i=1mΦi=1nα(k)i.This inequality is an extension of an inequality of von Neumann in the simple case that n=2. The necessary and sufficient condition for the equality sign to hold is established. Application of Hölder's inequality leads to further inequalities which can be useful in statistical mechanics.  相似文献   

19.
Although A′(3Π2) ← X(1Σ+) is forbidden in near case c molecules the A′ ← X transition can be efficiently accomplished by the three-step sequence A′(3Π2) ← D′(2) ← A(3Π1) ← X(1Σ+). Transitions to a range of levels of A′, vA = 2–38, have been recorded by this means, using J-selective polarization-labeling spectroscopy. Principal constants of the A′ state of I35Cl are Te = 12682.05, ωe = 224.57, ωeχe = 1.882, ωeye = ?0.0107, Be = 0.08653, and αe = 0.000675 cm?1. The A′ state is therefore similar in its physical characteristics to two other (relatively) deep states, A(3Π1) and B(3Π0+), of the 2431 configuration.  相似文献   

20.
Two band groups near 1450 Å, first observed by Tanaka, Yoshino, and Freeman (J. Chem. Phys.62, 4484–4496 (1975)) in discharges through mixtures of helium and argon and assigned by them to the HeAr+ ion, were studied under high resolution. Like the similar spectrum of HeNe+ previously investigated, the spectrum of HeAr+ is a charge transfer spectrum. The upper state B2Σ+ of both band groups is derived from He+(2S) + Ar(1S) while the two lower states A22Π12 and X2Σ+ are derived from He(1S) + Ar+(2P). All three states are very weakly bound, the two lower states even more weakly than the upper state. Unlike HeNe+ most of the HeAr+ bands are violet shaded. In the longward band group each band shows only three branches while in the shortward group there are four. The former observation shows that the A22Π12 state behaves like a 2Σ? state with γv ≈ 0. The B, D, γ, p, and ΔG values of all states were evaluated. While the Bv values of upper and lower states are nearly equal, the Dv values are quite different and this difference accounts for the violet shading of most of the bands even when Bv is slightly smaller than Bv; it also accounts for some of the extraheads and linelike features in the rotational structure. As in HeNe+ the 2Π32 component of 2Π was not observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号