首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Semi-parametric estimation of partially linear single-index models   总被引:1,自引:0,他引:1  
One of the most difficult problems in applications of semi-parametric partially linear single-index models (PLSIM) is the choice of pilot estimators and complexity parameters which may result in radically different estimators. Pilot estimators are often assumed to be root-n consistent, although they are not given in a constructible way. Complexity parameters, such as a smoothing bandwidth are constrained to a certain speed, which is rarely determinable in practical situations.In this paper, efficient, constructible and practicable estimators of PLSIMs are designed with applications to time series. The proposed technique answers two questions from Carroll et al. [Generalized partially linear single-index models, J. Amer. Statist. Assoc. 92 (1997) 477-489]: no root-n pilot estimator for the single-index part of the model is needed and complexity parameters can be selected at the optimal smoothing rate. The asymptotic distribution is derived and the corresponding algorithm is easily implemented. Examples from real data sets (credit-scoring and environmental statistics) illustrate the technique and the proposed methodology of minimum average variance estimation (MAVE).  相似文献   

3.
The asymptotic distribution for the local linear estimator in nonparametric regression models is established under a general parametric error covariance with dependent and heterogeneously distributed regressors. A two-step estimation procedure that incorporates the parametric information in the error covariance matrix is proposed. Sufficient conditions for its asymptotic normality are given and its efficiency relative to the local linear estimator is established. We give examples of how our results are useful in some recently studied regression models. A Monte Carlo study confirms the asymptotic theory predictions and compares our estimator with some recently proposed alternative estimation procedures.  相似文献   

4.
We investigate the estimation problem of parameters in a two-sample semiparametric model. Specifically, let X1,…,Xn be a sample from a population with distribution function G and density function g. Independent of the Xi’s, let Z1,…,Zm be another random sample with distribution function H and density function h(x)=exp[α+r(x)β]g(x), where α and β are unknown parameters of interest and g is an unknown density. This model has wide applications in logistic discriminant analysis, case-control studies, and analysis of receiver operating characteristic curves. Furthermore, it can be considered as a biased sampling model with weight function depending on unknown parameters. In this paper, we construct minimum Hellinger distance estimators of α and β. The proposed estimators are chosen to minimize the Hellinger distance between a semiparametric model and a nonparametric density estimator. Theoretical properties such as the existence, strong consistency and asymptotic normality are investigated. Robustness of proposed estimators is also examined using a Monte Carlo study.  相似文献   

5.
§1IntroductionConsiderthefixeddesignsemiparametricnonlinearregressionmodelsgivenbyyi=f(xi,θ)+λ(ti)+εi,i=1,...,n,(1)wheref(,)i...  相似文献   

6.
In this paper we consider the estimation of the error distribution in a heteroscedastic nonparametric regression model with multivariate covariates. As estimator we consider the empirical distribution function of residuals, which are obtained from multivariate local polynomial fits of the regression and variance functions, respectively. Weak convergence of the empirical residual process to a Gaussian process is proved. We also consider various applications for testing model assumptions in nonparametric multiple regression. The model tests obtained are able to detect local alternatives that converge to zero at an n−1/2-rate, independent of the covariate dimension. We consider in detail a test for additivity of the regression function.  相似文献   

7.
8.
This paper investigates the rate of convergence of estimating the regression weight function in a functional linear regression model. It is assumed that the predictor as well as the weight function are smooth and periodic in the sense that the derivatives are equal at the boundary points. Assuming that the functional data are observed at discrete points with measurement error, the complex Fourier basis is adopted in estimating the true data and the regression weight function based on the penalized least-squares criterion. The rate of convergence is then derived for both estimators. A simulation study is also provided to illustrate the numerical performance of our approach, and to make a comparison with the principal component regression approach.  相似文献   

9.
A new estimation procedure for a partial linear additive model with censored responses is proposed. To this aim, ideas of Lewbel and Linton [A. Lewbel, O. Linton, Nonparametric censored and truncated regression, Econometrica 70 (2002) 765-779] on censored model regression are combined with those of Kim et al. [W. Kim, O. Linton, N.W. Hengartner, A computationally efficient estimator for additive nonparametric regression with bootstrap confidence intervals, Journal of Computational and Graphical Statistics, 8 (1999) 278-297] on marginal integration and those on average derivatives. This allows for dimension reduction, interpretability and — depending on the context — for weights yielding computationally attractive estimates. Asymptotic behavior is provided for all proposed estimators.  相似文献   

10.
A nonparametric estimatef * of an unknown distribution densityf W is called locally minimax iff it is minimax for all not too small neighborhoodsW g ,g W, simultaneously, whereW is some dense subset ofW. Radaviius and Rudzkis proved the existence of such an estimate under some general conditions. However, the construction of the estimate is rather complicated. In this paper, a new estimate is proposed. This estimate is locally minimax under some additional assumptions which usually hold for orthobases of algebraic polynomial and is almost as simple as the linear projective estimate. Thus, it takes a form convenient for the construction of an adaptive estimator, which does not usea-priori information about the smoothness of the density. The adaptive estimation problem is briefly discussed and an unknown density fitting by Jacobi polynomials is investigated more explicitly.  相似文献   

11.
This paper suggests a robust estimation procedure for the parameters of the periodic AR (PAR) models when the data contains additive outliers. The proposed robust methodology is an extension of the robust scale and covariance functions given in, respectively, Rousseeuw and Croux (1993) [28], and Ma and Genton (2000) [23] to accommodate periodicity. These periodic robust functions are used in the Yule-Walker equations to obtain robust parameter estimates. The asymptotic central limit theorems of the estimators are established, and an extensive Monte Carlo experiment is conducted to evaluate the performance of the robust methodology for periodic time series with finite sample sizes. The quarterly Fraser River data was used as an example of application of the proposed robust methodology. All the results presented here give strong motivation to use the methodology in practical situations in which periodically correlated time series contain additive outliers.  相似文献   

12.
It is shown that the likelihood ratio of an autoregressive time series of finite order with a regression trend is asymptotically normal. This result is used to derive the power of a test for positive correlation of the residuals under local autoregressive alternatives. The test is based on the Durbin-Watson statistics.  相似文献   

13.
Variance function estimation in multivariate nonparametric regression is considered and the minimax rate of convergence is established in the iid Gaussian case. Our work uses the approach that generalizes the one used in [A. Munk, Bissantz, T. Wagner, G. Freitag, On difference based variance estimation in nonparametric regression when the covariate is high dimensional, J. R. Stat. Soc. B 67 (Part 1) (2005) 19-41] for the constant variance case. As is the case when the number of dimensions d=1, and very much contrary to standard thinking, it is often not desirable to base the estimator of the variance function on the residuals from an optimal estimator of the mean. Instead it is desirable to use estimators of the mean with minimal bias. Another important conclusion is that the first order difference based estimator that achieves minimax rate of convergence in the one-dimensional case does not do the same in the high dimensional case. Instead, the optimal order of differences depends on the number of dimensions.  相似文献   

14.
We consider a panel data semiparametric partially linear regression model with an unknown parameter vector for the linear parametric component, an unknown nonparametric function for the nonlinear component, and a one-way error component structure which allows unequal error variances (referred to as heteroscedasticity). We develop procedures to detect heteroscedasticity and one-way error component structure, and propose a weighted semiparametric least squares estimator (WSLSE) of the parametric component in the presence of heteroscedasticity and/or one-way error component structure. This WSLSE is asymptotically more efficient than the usual semiparametric least squares estimator considered in the literature. The asymptotic properties of the WSLSE are derived. The nonparametric component of the model is estimated by the local polynomial method. Some simulations are conducted to demonstrate the finite sample performances of the proposed testing and estimation procedures. An example of application on a set of panel data of medical expenditures in Australia is also illustrated.  相似文献   

15.
Linear regression models with vague concepts extend the classical single equation linear regression models by admitting observations in form of fuzzy subsets instead of real numbers. They have lately been introduced (cf. [V. Krätschmer, Induktive Statistik auf Basis unscharfer Meßkonzepte am Beispiel linearer Regressionsmodelle, unpublished postdoctoral thesis, Faculty of Law and Economics of the University of Saarland, Saarbrücken, 2001; V. Krätschmer, Least squares estimation in linear regression models with vague concepts, Fuzzy Sets and Systems, accepted for publication]) to improve the empirical meaningfulness of the relationships between the involved items by a more sensitive attention to the problems of data measurement, in particular, the fundamental problem of adequacy. The parameters of such models are still real numbers, and a method of estimation can be applied which extends directly the ordinary least squares method. In another recent contribution (cf. [V. Krätschmer, Strong consistency of least squares estimation in linear regression models with vague concepts, J. Multivar. Anal., accepted for publication]) strong consistency and -consistency of this generalized least squares estimation have been shown. The aim of the paper is to complete these results by an investigation of the limit distributions of the estimators. It turns out that the classical results can be transferred, in some cases even asymptotic normality holds.  相似文献   

16.
This paper is concerned with the estimating problem of the partially linear regression models where the linear covariates are measured with additive errors. A difference based estimation is proposed to estimate the parametric component. We show that the resulting estimator is asymptotically unbiased and achieves the semiparametric efficiency bound if the order of the difference tends to infinity. The asymptotic normality of the resulting estimator is established as well. Compared with the corrected profile least squares estimation, the proposed procedure avoids the bandwidth selection. In addition, the difference based estimation of the error variance is also considered. For the nonparametric component, the local polynomial technique is implemented. The finite sample properties of the developed methodology is investigated through simulation studies. An example of application is also illustrated.  相似文献   

17.
We consider one-way classification model in experimental design when the errors have generalized secant hyperbolic distribution. We obtain efficient and robust estimators for block effects by using the modified maximum likelihood estimation (MML) methodology. A test statistic analogous to the normal-theory F statistic is defined to test block effects. We also define a test statistic for testing linear contrasts. It is shown that test statistics based on MML estimators are efficient and robust. The methodology readily extends to unbalanced designs.  相似文献   

18.
We consider a panel data semiparametric partially linear regression model with an unknown vector β of regression coefficients, an unknown nonparametric function g(·) for nonlinear component, and unobservable serially correlated errors. The correlated errors are modeled by a vector autoregressive process which involves a constant intraclass correlation. Applying the pilot estimators of β and g(·), we construct estimators of the autoregressive coefficients, the intraclass correlation and the error variance, and investigate their asymptotic properties. Fitting the error structure results in a new semiparametric two-step estimator of β, which is shown to be asymptotically more efficient than the usual semiparametric least squares estimator in terms of asymptotic covariance matrix. Asymptotic normality of this new estimator is established, and a consistent estimator of its asymptotic covariance matrix is presented. Furthermore, a corresponding estimator of g(·) is also provided. These results can be used to make asymptotically efficient statistical inference. Some simulation studies are conducted to illustrate the finite sample performances of these proposed estimators.  相似文献   

19.
In this paper, we derive the Berry-Esseen bounds of the wavelet estimator for a nonparametric regression model with linear process errors generated by φ-mixing sequences. As application, by the suitable choice of some constants, the convergence rate O(n−1/6) of uniformly asymptotic normality of the wavelet estimator is obtained. Our results generalize some known results in the literature.  相似文献   

20.
In this paper, we study the problem of estimating a Markov chain XX (signal) from its noisy partial information YY, when the transition probability kernel depends on some unknown parameters. Our goal is to compute the conditional distribution process P{XnYn,…,Y1}P{XnYn,,Y1}, referred to hereafter as the optimal filter. Following a standard Bayesian technique, we treat the parameters as a non-dynamic component of the Markov chain. As a result, the new Markov chain is not going to be mixing, even if the original one is. We show that, under certain conditions, the optimal filters are still going to be asymptotically stable with respect to the initial conditions. Thus, by computing the optimal filter of the new system, we can estimate the signal adaptively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号