首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider the behavior of Stuart-Landau oscillators as generic limit-cycle oscillators when they are interacting with delay. We investigate the role of amplitude and phase instabilities in producing symmetry-breaking/restoring transitions. Using analytical and numerical methods we compare the dynamics of one oscillator with delayed feedback, two oscillators mutually coupled with delay, and two delay-coupled elements with self-feedback. Taking only the phase dynamics into account, no chaotic dynamics is observed, and the stability of the identical synchronization solution is the same in each of the three studied networks of delay-coupled elements. When allowing for a variable oscillation amplitude, the delay can induce amplitude instabilities. We provide analytical proof that, in case of two mutually coupled elements, the onset of an amplitude instability always results in antiphase oscillations, leading to a leader-laggard behavior in the chaotic regime. Adding self-feedback with the same strength and delay as the coupling stabilizes the system in the transverse direction and, thus, promotes the onset of identically synchronized behavior.  相似文献   

2.
We study (3+1)D kinetic (Boltzmann-Vlasov) equations for relativistic plasma particles in a one dimensionally expanding geometry motivated by ultrarelativistic heavy-ion collisions. We set up local equations in terms of Yang-Mills potentials and auxiliary fields that allow simulations of hard- (expanding-) loop dynamics on a lattice. We determine numerically the evolution of plasma instabilities in the linear (Abelian) regime and also derive their late-time behavior analytically, which is consistent with recent numerical results on the evolution of the so-called melting color-glass condensate. We also find a significant delay in the onset of growth of plasma instabilities which are triggered by small rapidity fluctuations, even when the initial state is highly anisotropic.  相似文献   

3.
We analyze chaotic behavior found in numerical simulations of the transverse pattern dynamics of a laser demonstrating that in some cases chaos originates in phase dynamics and is of low dimension. Investigations of both a Ginzburg-Landau equation for the complex field amplitude of the laser output and a Kuramoto-Sivashinsky-type equation for only the phase of that complex field equation find the same behavior. Both equations can be expanded in terms of spatial modes and in the chaotic regime the behavior of the modal amplitudes seems relatively independent. However, the fluctuations of the modal amplitudes are sufficiently correlated so that the spatiotemporal dynamics is a form of low dimensional chaos rather than a more complex turbulent behavior or even one that might merit the term spatiotemporal chaos.  相似文献   

4.
The dynamics of globally coupled map lattices can be described in terms of a nonlinear Frobenius-Perron equation in the limit of large system size. This approach allows for an analytical computation of stationary states and their stability. The bifurcation behavior of coupled tent maps near the chaotic band merging point is presented. Furthermore, the time-independent states of coupled logistic equations are analyzed. The bifurcation diagram of the uncoupled map carries over to the map lattice. The analytical results are supplemented with numerical simulations  相似文献   

5.
We investigate nonlinear phenomena in dispersed two-phase systems under creeping-flow conditions. We consider nonlinear evolution of a single deformed drop and collective dynamics of arrays of hydrodynamically coupled particles. To explore physical mechanisms of system instabilities, chaotic drop evolution, and structural transitions in particle arrays we use simple models, such as small-deformation equations and effective-medium theory. We find numerical and analytical solutions of the simplified governing equations. The small-deformation equations for drop dynamics are analyzed using results of dynamical systems theory. Our investigations shed new light on the dynamics of complex fluids, where the nonlinearity often stems from the evolving boundary conditions in Stokes flow.  相似文献   

6.
We present a systematic approach to deriving normal forms and related amplitude equations for flows and discrete dynamics on the center manifold of a dynamical system at local bifurcations and unfoldings of these. We derive a general, explicit recurrence relation that completely determines the amplitude equation and the associated transformation from amplitudes to physical space. At any order, the relation provides explicit expressions for all the nonvanishing coefficients of the amplitude equation together with straightforward linear equations for the coefficients of the transformation. The recurrence relation therefore provides all the machinery needed to solve a given physical problem in physical terms through an amplitude equation. The new result applies to any local bifurcation of a flow or map for which all the critical eigenvalues are semisimple (i.e., have Riesz index unity). The method is an efficient and rigorous alternative to more intuitive approaches in terms of multiple time scales. We illustrate the use of the method by deriving amplitude equations and associated transformations for the most common simple bifurcations in flows and iterated maps. The results are expressed in tables in a form that can be immediately applied to specific problems. (c) 1998 American Institute of Physics.  相似文献   

7.
Recurrence gives powerful tools to investigate the statistical properties of dynamical systems. We present in this paper some applications of the statistics of first return times to characterize the mixed behavior of dynamical systems in which chaotic and regular motion coexist. Our analysis is local: we take a neighborhood A of a point x and consider the conditional distribution of the points leaving A and for which the first return to A, suitably normalized, is bigger than t. When the measure of A shrinks to zero the distribution converges to the exponential e(-t) for almost any point x, if the system is mixing and the set A is a ball or a cylinder. We consider instead a system, a skew integrable map of the cylinder, which is not ergodic and has zero entropy. This map describes a shear flow and has a local mixing property. We rigorously prove that the statistics of first return is of polynomial type around the fixed points and we generalize around other points with numerical computations. The result could be extended to quasi-integrable area preserving maps such as the standard map for small coupling. We then analyze the distribution of return times in a region which is composed by two invariants subdomains: one with a mixing dynamics and the other with an integrable dynamics given by our shear flow. We show that the statistics of first return in this mixed region is asymptotically given by the exponential law, but this limit is attained by an intermediate regime where exponential and polynomial laws are linearly superposed and weighted by some factors which are proportional to the relative sizes of the chaotic and regular regions. The result on the statistics of first return times for mixed regions in the phase space can provide a basis to analyze such a property for area preserving maps in mixed regions even when a rigorous result is not available. To this end we present numerical investigations on the standard map which confirm the results of the model.  相似文献   

8.
Various spatial orders introduced by the instabilities of synchronous chaotic state of spatiotemporal systems are investigated by considering coupled map lattice and chaotic partial differential equation. In particular, the motions of on-off intermittent states at the onset of the instabilities are studied in detail. The chaotic desynchronized patterns can be described by a simple universal form, including three parts: the synchronous chaos; a spatially ordered pattern, determined by the unstable mode of the reference synchronous chaos; and on-off intermittency of the scale of this given pattern. Received 31 July 2002 / Received in final form 20 November 2002 Published online 31 December 2002  相似文献   

9.
We show that for certain classes of deterministic dynamical systems the Perron-Frobenius equation reduces to the Fokker-Planck equation in an appropriate scaling limit. By perturbative expansion in a small time scale parameter, we also derive the equations that are obeyed by the first- and second-order correction terms to the Fokker-Planck limit case. In general, these equations describe non-Gaussian corrections to a Langevin dynamics due to an underlying deterministic chaotic dynamics. For double-symmetric maps, the first-order correction term turns out to satisfy a kind of inhomogeneous Fokker-Planck equation with a source term. For a special example, we are able solve the first- and second-order equations explicitly.  相似文献   

10.
The chaotic behavior of Van der Pol–Mathieu–Duffing oscillator under bounded noise is investigated. By using random Melnikov technique, a mean square criterion is used to detect the necessary conditions for chaotic motion of this stochastic system. The results show that the threshold of bounded noise amplitude for the onset of chaos in this system increases as the intensity of the noise in frequency increases, which is further verified by the maximal Lyapunov exponents of the system. The effect of bounded noise on Poincaré map is also investigated, in addition the numerical simulation of the maximal Lyapunov exponents.  相似文献   

11.
We propose several examples of smooth low-order autonomous dynamical systems which have apparently uniformly hyperbolic attractors. The general idea is based on the use of coupled self-sustained oscillators where, due to certain amplitude nonlinearities, successive epochs of damped and excited oscillations alternate. Because of additional, phase sensitive coupling terms in the equations, the transfer of excitation from one oscillator to another is accompanied by a phase transformation corresponding to some chaotic map (in particular, an expanding circle map or Anosov map of a torus). The first example we construct is a minimal model possessing an attractor of the Smale-Williams type. It is a four-dimensional system composed of two oscillators. The underlying amplitude equations are similar to those of the predator-pray model. The other three examples are systems of three coupled oscillators with a heteroclinic cycle. This scheme presents more variability for the phase manipulations: in the six-dimensional system not only the Smale-Williams attractor, but also an attractor with Arnold cat map dynamics near a two-dimensional toral surface, and a hyperchaotic attractor with two positive Lyapunov exponents, are realized.  相似文献   

12.
In this paper we consider a class of scalar integral equations with a form of space-dependent delay. These nonlocal models arise naturally when modelling neural tissue with active axons and passive dendrites. Such systems are known to support a dynamic (oscillatory) Turing instability of the homogeneous steady state. In this paper we develop a weakly nonlinear analysis of the travelling and standing waves that form beyond the point of instability. The appropriate amplitude equations are found to be the coupled mean-field Ginzburg-Landau equations describing a Turing-Hopf bifurcation with modulation group velocity of O(1). Importantly we are able to obtain the coefficients of terms in the amplitude equations in terms of integral transforms of the spatio-temporal kernels defining the neural field equation of interest. Indeed our results cover not only models with axonal or dendritic delays but also those which are described by a more general distribution of delayed spatio-temporal interactions. We illustrate the predictive power of this form of analysis with comparison against direct numerical simulations, paying particular attention to the competition between standing and travelling waves and the onset of Benjamin-Feir instabilities.  相似文献   

13.
Wang S  Xie Y  Qu Z 《New journal of physics》2008,10(5):55001-55024
Low-dimensional iterated map models have been widely used to study action potential dynamics in isolated cardiac cells. Coupled iterated map models have also been widely used to investigate action potential propagation dynamics in one-dimensional (1D) coupled cardiac cells, however, these models are usually empirical and not carefully validated. In this study, we first developed two coupled iterated map models which are the standard forms of diffusively coupled maps and overcome the limitations of the previous models. We then determined the coupling strength and space constant by quantitatively comparing the 1D action potential duration profile from the coupled cardiac cell model described by differential equations with that of the coupled iterated map models. To further validate the coupled iterated map models, we compared the stability conditions of the spatially uniform state of the coupled iterated maps and those of the 1D ionic model and showed that the coupled iterated map model could well recapitulate the stability conditions, i.e., the spatially uniform state is stable unless the state is chaotic. Finally, we combined conduction into the developed coupled iterated map model to study the effects of coupling strength on wave stabilities and showed that the diffusive coupling between cardiac cells tends to suppress instabilities during reentry in a 1D ring and the onset of discordant alternans in a periodically paced 1D cable.  相似文献   

14.
Lifting the singular nature of a model for peeling of an adhesive tape   总被引:1,自引:0,他引:1  
We investigate the dynamics of peeling of an adhesive tape subjected to a constant pull speed. Due to the constraint between the pull force, peel angle and the peel force, the equations of motion derived earlier fall into the category of differential-algebraic equations (DAE) requiring an appropriate algorithm for its numerical solution. By including the kinetic energy arising from the stretched part of the tape in the Lagrangian, we derive equations of motion that support stick-slip jumps as a natural consequence of the inherent dynamics itself, thus circumventing the need to use any special algorithm. In the low mass limit, these equations reproduce solutions obtained using a differential-algebraic algorithm introduced for the earlier singular equations. We find that mass has a strong influence on the dynamics of the model rendering periodic solutions to chaotic and vice versa. Apart from the rich dynamics, the model reproduces several qualitative features of the different waveforms of the peel force function as also the decreasing nature of force drop magnitudes.  相似文献   

15.
This paper investigates the multi-pulse global bifurcations and chaotic dynamics for the nonlinear, non-planar oscillations of the parametrically excited viscoelastic moving belt using an extended Melnikov method in the resonant case. Using the Kelvin-type viscoelastic constitutive law and Hamilton's principle, the equations of motion are derived for the viscoelastic moving belt with the external damping and parametric excitation. Applying the method of multiple scales and Galerkin's approach to the partial differential governing equation, the four-dimensional averaged equation is obtained for the case of 1:1 internal resonance and primary parametric resonance. From the averaged equations obtained, the theory of normal form is used to derive the explicit expressions of normal form with a double zero and a pair of pure imaginary eigenvalues. Based on the explicit expressions of normal form, the extended Melnikov method is used for the first time to investigate the Shilnikov-type multi-pulse homoclinic bifurcations and chaotic dynamics. The paper demonstrates how to employ the extended Melnikov method to analyze the Shilnikov-type multi-pulse homoclinic bifurcations and chaotic dynamics of high-dimensional nonlinear systems in engineering applications. Numerical simulations show that for the nonlinear non-planar oscillations of the viscoelastic moving belt, the Shilnikov-type multi-pulse chaotic motions can occur. Overall, both theoretical and numerical studies suggest that the chaos for the Smale horseshoe sense in motion exists.  相似文献   

16.
 以磁绝缘传输线振荡器中电子运动和辐射场演化方程为基础,分析了场与电子相互作用过程中的不稳定性。这种不稳定性的发展导致场出现极限环振荡和混沌。在软非线性区域,辐射场表现为不连续的极限环振荡;在硬非线性区域,辐射场表现为连续的混沌行为。控制失谐量可加速或抑制这些不稳定态的出现。优化和调节参数可控制器件的运行状态, 获得较高的输出功率。  相似文献   

17.
Stability and optimization of dispersion-managed soliton control   总被引:1,自引:0,他引:1  
Dispersion-managed solitons with in-line all-optical regeneration are shown to be subject to amplitude and timing-jitter instabilities. We identify and discuss the different natures of these instabilities by means of a linear stability analysis, which is in good agreement with the full numerical solutions of the governing equations. Stable pulse propagation can be achieved through appropriate choices of dispersion map and pulse energy.  相似文献   

18.
We analyze the semi-classical and quantum behavior of the Bianchi IX Universe in the Polymer Quantum Mechanics framework, applied to the isotropic Misner variable, linked to the space volume of the model. The study is performed both in the Hamiltonian and field equations approaches, leading to the remarkable result of a still singular and chaotic cosmology, whose Poincaré return map asymptotically overlaps the standard Belinskii–Khalatnikov–Lifshitz one. In the quantum sector, we reproduce the original analysis due to Misner, within the revised Polymer approach and we arrive to demonstrate that the quantum numbers of the point-Universe still remain constants of motion. This issue confirms the possibility to have quasi-classical states up to the initial singularity. The present study clearly demonstrates that the asymptotic behavior of the Bianchi IX Universe towards the singularity is not significantly affected by the Polymer reformulation of the spatial volume dynamics both on a pure quantum and a semiclassical level.  相似文献   

19.
冯伟 《中国物理 B》2012,(3):411-415
We carry out a theoretical study of nonlinear dynamics in terahertz-driven n+ nn+ wurtzite InN diodes by using time-dependent drift diffusion equations.A cooperative nonlinear oscillatory mode appears due to the negative differential mobility effect,which is the unique feature of wurtzite InN aroused by its strong nonparabolicity of the Γ 1 valley.The appearance of different nonlinear oscillatory modes,including periodic and chaotic states,is attributed to the competition between the self-sustained oscillation and the external driving oscillation.The transitions between the periodic and chaotic states are carefully investigated using chaos-detecting methods,such as the bifurcation diagram,the Fourier spectrum and the first return map.The resulting bifurcation diagram displays an interesting and complex transition picture with the driving amplitude as the control parameter.  相似文献   

20.
We use the time-dependent variational approach to demonstrate how the modulational and oscillatory instabilities can be generated in Bose–Einstein condensates (BECs) trapped in a periodic optical lattice with weak driving harmonic potential. We derive and analyze the ordinary differential equations for the time evolution of the amplitude and phase of the modulational perturbation, and obtain the instability condition of the condensates through the effective potential. The effect of the optical potential on the dynamics of the BECs is shown. We perform direct numerical simulations to support our theoretical findings, and good agreement is found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号