首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
1,1′‐Dinitramino‐5,5′‐bitetrazole and 1,1′‐dinitramino‐5,5′‐azobitetrazole were synthesized for the first time. The neutral compounds are extremely sensitive and powerful explosives. Selected nitrogen‐rich salts were prepared to adjust sensitivity and performance values. The compounds were characterized by low‐temperature X‐ray diffraction, IR and Raman spectroscopy, multinuclear NMR spectroscopy, elemental analysis, and DTA/DSC. Calculated energetic performances using the EXPLO5 code based on calculated (CBS‐4M) heats of formation and X‐ray densities support the high performances of the 1,1′‐dinitramino‐5,5′‐bitetrazoles as energetic materials. The sensitivities toward impact, friction, and electrostatic discharge were also explored. Most of the compounds show sensitivities in the range of primary explosives and should only be handled with great care!  相似文献   

2.
Energetic coordination compounds (ECC) based on 3d or 4d transition metals show promising characteristics to be used as potential replacements for highly toxic lead‐containing primary explosives. Herein we report the synthesis of 12 new ECC based on 1‐azidoethyl‐5H‐tetrazole (AET) or 1‐ethyl‐5H‐tetrazole (1‐ETZ) as nitrogen‐rich ligands as well as various central metals (Cu2+, Fe2+, Zn2+, Ag+) and anions such as perchlorate and nitrate. The influence of the increased endothermicity by adding an additional azide group was studied by comparing analogous ECC based on AET and 1‐ETZ. Furthermore, the compounds were extensively analyzed by XRD, IR, EA, solid‐state UV/Vis, and DTA as well as their sensitivities toward impact and friction were determined with BAM standard techniques, together with their sensitivity against electrostatic discharge. The sensitivities were compared with the one toward ball drop impact measurements. Classical initiation tests (nitropenta filled detonators) and ignition by laser irradiation highly prove the potential use of the most promising compounds in lead‐free initiation systems.  相似文献   

3.
N? C bonded (non‐bridged) 5‐(1,2,3‐triazol‐1‐yl)tetrazoles were synthesized by the CuI‐catalyzed 1,3‐dipolar azide–alkyne cycloaddition click reaction using 5‐azido‐N‐(propan‐2‐ylidene)‐1H‐tetrazole ( 1 ). For example, the click reaction of 1 in the presence of CuSO4?5 H2O and Na ascorbate at 65–70 °C for 48 h in CH3CN/H2O co‐solvent was found to be limited to only terminal alkynes that have electron‐withdrawing groups, CF3C?CH ( 2 a ) and SF5C?CH ( 2 b ), giving rise to isopropylidene‐[5‐(4‐trifluoromethyl‐1,2,3‐triazol‐1‐yl)tetrazol‐1‐yl]amine ( 3 a ) and isopropylidene‐[5‐(4‐pentafluorosulfanyl‐1,2,3‐triazol‐1‐yl)tetrazol‐1‐yl]amine ( 3 b ) in 47 % and 66 % yields, respectively. When carried out under conditions using CuI and 2,6‐lutidine as catalysts at 0 °C for 13 h in CHCl3, the click reaction was versatile toward alkynes even those having electron‐donating groups. Properties of new products were determined and compared with those of 1 . Heats of formation, detonation pressures, detonation velocities and impact sensitivities are reported for these new 5‐(1,2,3‐triazol‐1‐yl)tetrazoles.  相似文献   

4.
Bis(4‐nitraminofurazanyl‐3‐azoxy)azofurazan ( 1 ) and ten of its energetic salts were prepared and fully characterized. Computational analysis based on isochemical shielding surface and trigger bond dissociation enthalpy provide a better understanding of the thermal stabilities for nitramine‐furazans. These energetic compounds exhibit good densities, high heats of formation, and excellent detonation velocity and pressure. Some representative compounds, for example, 1 (vD: 9541 m s?1; P: 40.5 GPa), and 4 (vD: 9256 m s?1; P: 38.0 GPa) exhibit excellent detonation performances, which are comparable with current high explosives such as RDX (vD: 8724 m s?1; P: 35.2 GPa) and HMX (vD: 9059 m s?1; P: 39.2 GPa).  相似文献   

5.
High‐density energetic salts that contain nitrogen‐rich cations and the 5‐(tetrazol‐5‐ylamino)tetrazolate (HBTA?) or the 5‐(tetrazol‐5‐yl)tetrazolate (HBT?) anion were readily synthesized by the metathesis reactions of sulfate salts with barium compounds, such as bis[5‐(tetrazol‐5‐ylamino)tetrazolate] (Ba(HBTA)2), barium iminobis(5‐tetrazolate) (BaBTA), or barium 5,5′‐bis(tetrazolate) (BaBT) in aqueous solution. All salts were fully characterized by IR spectroscopy, multinuclear (1H, 13C, 15N) NMR spectroscopy, elemental analyses, density, differential scanning calorimetry (DSC), and impact sensitivity. Ba(HBTA)2 ? 4 H2O crystallizes in the triclinic space group P$\bar 1$ , as determined by single‐crystal X‐ray diffraction, with a density of 2.177 g cm?3. The densities of the other organic energetic salts range between 1.55 and 1.75 g cm?3 as measured by a gas pycnometer. The detonation pressure (P) values calculated for these salts range from 19.4 to 33.6 GPa, and the detonation velocities (νD) range from 7677 to 9487 m s?1, which make them competitive energetic materials. Solid‐state 13C NMR spectroscopy was used as an effective technique to determine the structure of the products that were obtained from the metathesis reactions of biguanidinium sulfate with barium iminobis(5‐tetrazolate) (BaBTA). Thus, the structure was determined as an HBTA salt by the comparison of its solid‐state 13C NMR spectroscopy with those of ammonium 5‐(tetrazol‐5‐ylamino)tetrazolate (AHBTA) and diammonium iminobis(5‐tetrazolate) (A2BTA).  相似文献   

6.
5‐(Tetrazol‐1‐yl)‐2H‐tetrazole ( 1 ), or 1,5′‐bistetrazole, was synthesized by the cyclization of 5‐amino‐1H‐tetrazole, sodium azide and triethyl orthoformate in glacial acetic acid. A derivative of 1 , 2‐methyl‐5‐(tetrazol‐1‐yl)tetrazole ( 2 ) can be obtained by this method starting from 5‐amino‐2‐methyl‐tetrazole. Furthermore, selected salts of 1 with nitrogen‐rich and metal (alkali and transition metal) cations, including hydroxylammonium ( 4 ), triaminoguanidinium ( 5 ), copper(I) ( 8 ) and silver ( 9 ), as well as copper(II) complexes of both 1 and 2 were prepared. An intensive characterization of the compounds is given, including vibrational (IR, Raman) and multinuclear NMR spectroscopy, mass spectrometry, DSC and single‐crystal X‐ray diffraction. Their sensitivities towards physical stimuli (impact, friction, electrostatic) were determined according to Bundesamt für Materialforschung (BAM) standard methods. Energetic performance (detonation velocity, pressure, etc.) parameters were calculated with the EXPLO5 program, based on predicted heats of formation derived from enthalpies computed at the CBS‐4M level of theory and utilizing the atomization energy method. From the analytical and calculated data, their potential as energetic materials in different applications was evaluated and discussed.  相似文献   

7.
2,6‐Bis(picrylamino)pyridine ( 1 ; pre‐PYX) and 2,6‐bis(picrylamino)‐3,5‐dinitropyridine ( 2 ; PYX) were synthesized using an improved literature method. Compounds 1 and 2 were reinvestigated in detail and the X‐ray structures ( 1 : ρ=1.698 g cm?3 at 173 K; 2 : ρ=1.757 g cm?3 at 298 K) are given. The reactions of 2 with different bases, such as alkali metal hydroxides (sodium, potassium, rubidium, cesium), and N‐bases (ammonia, hydrazine, hydroxylamine, guanidinium carbonate, aminoguanidine bicarbonate) are reported, as well as metathesis reactions producing energetic salts. Several energetic compounds were synthesized and characterized for the first time using vibrational (IR, Raman) and multinuclear NMR spectroscopy, mass spectrometry, elemental analysis, and DSC. The crystal structures of four energetic salts were determined using low temperature single‐crystal X‐ray diffraction. Heats of formation for the metal‐free species were calculated using the Gaussian 09 software. Detonation parameters were estimated using the EXPLO5 program. The sensitivities towards impact, friction, and electrostatic discharge were also determined.  相似文献   

8.
A new way to make a bang : Several functionalized 1‐ethyl‐5‐aminotetrazoles, 1‐ethyl‐5‐nitrimino‐tetrazoles, and copper complexes have been synthesized and their chemical and energetic properties have been comprehensively characterized. The compounds belong to all classes of “energetic materials”: explosives, propellants, and pyrotechnics.

  相似文献   


9.
Energetic mono‐ and dicationic 3,4‐diaminotriazolium salts have been prepared by combining stoichiometric amounts (1:1 or 2:1 molar ratio) of 3,4‐diaminotriazole with various oxygen‐containing tetrazoles, and the structures have been confirmed by single‐crystal XRD for the first time. All structures are dominated by a strong hydrogen‐bond network owing to both amino groups and oxygen in the molecule. All salts, except 7 , exhibit excellent thermal stabilities with decomposition temperatures over 200 °C. Based on experimental densities and theoretical calculations carried out by using the Gaussian 03 suite of programs, all salts have calculated detonation pressures (20.3–33.9 GPa) and velocities (7095–8642 m s?1).  相似文献   

10.
A simple and straightforward synthesis of 5,5′‐diamino‐4,4′‐dinitramino‐3,3′‐bi‐1,2,4‐triazole by the selective nitration of 4,4′,5,5′‐tetraamino‐3,3′‐bi‐1,2,4‐triazole is presented. The interaction of the amino and nitramino groups improves the energetic properties of this functionalized bitriazole. For a deeper investigation of these properties, various nitrogen‐rich derivatives were synthesized. The new compounds were investigated and characterized by spectroscopy (1H and 13C NMR, IR, Raman), elemental analysis, mass spectrometry, differential thermal analysis (DTA), X‐ray analysis, and impact and friction sensitivities (IS, FS). X‐ray analyses were performed and deliver insight into structural characteristics with which the stability of the compounds can be explained. The standard enthalpies of formation were calculated for all compounds at the CBS‐4M level of theory, revealing highly positive heats of formation. The energetic performance of the new molecules was predicted with the EXPLO5 V6.02 computer. A small‐scale shock reactivity test (SSRT) and a toxicity test gave a first impression of the performance and toxicity of selective compounds.  相似文献   

11.
12.
One route to high density and high performance energetic materials based on 1,2,4,5‐tetrazine is the introduction of 2,4‐di‐N‐oxide functionalities. Based on several examples and through theoretical analysis, the strategy of regioselective introduction of these moieties into 1,2,4,5‐tetrazines has been developed. Using this methodology, various new tetrazine structures containing the N‐oxide functionality were synthesized and fully characterized using IR, NMR, and mass spectroscopy, elemental analysis, and single‐crystal X‐ray analysis. Hydrogen peroxide (50 %) was used very effectively in lieu of the usual 90 % peroxide in this system to generate N‐oxide tetrazine compounds successfully. Comparison of the experimental densities of N‐oxide 1,2,4,5‐tetrazine compounds with their 1,2,4,5‐tetrazine precursors shows that introducing the N‐oxide functionality is a highly effective and feasible method to enhance the density of these materials. The heats of formation for all compounds were calculated with Gaussian 03 (revision D.01) and these values were combined with measured densities to calculate detonation pressures (P) and velocities (νD) of these energetic materials (Explo 5.0 v. 6.01). The new oxygen‐containing tetrazines exhibit high density, good thermal stability, acceptable oxygen balance, positive heat of formation, and excellent detonation properties, which, in some cases, are superior to those of 1,3,5‐tritnitrotoluene (TNT), 1,3,5‐trinitrotriazacyclohexane (RDX), and octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine (HMX).  相似文献   

13.
Large nitramino‐substituted furazan anions were combined with small cations (hydroxylammonium, hydrazinium, and ammonium) to form a series of energetic salts that was fully characterized. The structures of several of the compounds ( 1 a , 2 a , 3 a , and 4 a ) were further confirmed by single‐crystal X‐ray diffraction. Based on their physiochemical properties, such as density, thermal stability, and sensitivity, together with the calculated detonation properties, it was found that they exhibit good detonation performance and have potential application as high‐energy‐density materials.  相似文献   

14.
A family of 3,6‐dinitropyrazolo[4,3‐c]pyrazole‐based energetic compounds was synthesized by using versatile N‐functionalization strategies. Subsequently, nine ionic derivatives of the N,N′‐(3,6‐dinitropyrazolo[4,3‐c]pyrazole‐1,4‐diyl)dinitramidate anion were prepared by acid‐base reactions and fully characterized by infrared, multinuclear NMR spectra, and elemental analysis. The structures of four of these compounds were further confirmed by single‐crystal X‐ray diffraction. Based on their different physical and detonation properties, these compounds exhibit promising potential as modern energetic materials and can be variously classified as green primary explosives, high‐performance secondary explosives, fuel‐rich propellants, and propellant oxidizers.  相似文献   

15.
16.
Within this contribution on bis(oxadiazoles) we report on bis‐hydroxylammonium 5,5′‐dinitro‐methyl‐3,3′‐bis(1,2,4‐oxadiazolate), which (to the best of our knowledge) shows the highest density (2.00 g cm?3 at 92 K, 1.95 g cm?3 at RT) ever reported for an ionic CHNO explosive. Also the corresponding bis(ammonium) salt shows an outstanding density of 1.95 g cm?3 (173 K). The reaction of the 3,3′‐bis(1,2,4‐oxadiazolyl)‐5,5′‐bis(2,2′‐dinitro)‐diacetic acid diethyl ester with different nitrogen‐rich bases, such as ammonia, hydrazine, hydroxylamine, and triaminoguanidine causes decarboxylation followed by the formation of the corresponding salts (cation/anion stoichiometry 2:1). The reactions are performed at ambient temperature in H2O/MeOH mixtures and furnish qualitatively pure products showing characteristics of typical secondary explosives. The obtained compounds were characterized by multinuclear NMR spectroscopy, IR and Raman spectroscopy, as well as mass spectrometry. Single‐crystal X‐ray diffraction studies were performed and the structures of all compounds were determined at low temperatures. The thermal stability was measured by differential scanning calorimetry (DSC). The sensitivities were explored by using the BAM drophammer and friction test. The heats of formation were calculated by the atomization method based on CBS‐4M enthalpies. With these values and the X‐ray densities, several detonation parameters such as the detonation pressure, velocity, energy, and temperature were computed using the EXPLO5 code.  相似文献   

17.
Here we report on the preparation of two hydrogen atom free 3,3′‐bi(1,2,4‐oxadiazole) derivatives. 5,5′‐Bis(fluorodinitromethyl)‐3,3′‐bi(1,2,4‐oxadiazole) was synthesised by fluorination of diammonium 5,5′‐bis(dinitromethanide)‐3,3′‐bi(1,2,4‐oxadiazole). For our previously reported analogue 5,5′‐bis(trinitromethyl)‐3,3′‐bi(1,2,4‐oxadiazole), a new synthetic route starting from new 3,3′‐bi(1,2,4‐oxadiazolyl)‐5,5′‐diacetic acid was developed. In this course also hitherto unknown 5,5′‐dimethyl‐3,3′‐bi(1,2,4‐oxadiazole) was isolated. The compounds were characterised by multinuclear NMR spectroscopy, IR and Raman spectroscopy, elemental analysis as well as mass spectrometry. X‐ray diffraction studies were performed and the crystal structures for the 5,5'‐dimethyl and 5,5'‐(fluorodinitromethyl) derivatives are reported. The energetic 5,5'‐(fluorodinitromethyl) and 5,5'‐(trinitromethyl) compounds do not contain any hydrogen atoms and show remarkable high densities. Furthermore, the thermal stabilities and sensitivities were determined by differential scanning calorimetry (DSC) and standardised impact and friction tests. The heats of formation were calculated by the atomisation method based on CBS‐4M enthalpies. With these values and the room‐temperature X‐ray densities, several detonation and propulsion parameters, such as the detonation velocity and pressure as well as the specific impulse of mixtures with aluminium, were computed using the EXPLO5 code.  相似文献   

18.
On the basis of the structural and electronic properties of 14 different cyclic nitramine molecules, two types of formulas are employed to predict their electric spark sensitivity. One contains the minimum Mulliken charges of nitro group, the ratio of hydrogen to oxygen, and the ratio of carbon to oxygen; the other contains the lowest unoccupied molecular orbital energy, the ratio of hydrogen to oxygen, and the ratio of carbon to oxygen. Using these two types of formulas, we calculate the electric spark sensitivity of these 14 cyclic nitramine molecules, and compare them with the experimental data and previous theoretical values. And our investigations show that the former type of formula is better than the latter on predicting the electric spark sensitivity for cyclic nitramine molecules.  相似文献   

19.
3,4‐Bis(1H‐5‐tetrazolyl)furoxan (H2BTF, 2 ) and its monoanionic salts that contain nitrogen‐rich cations were readily synthesized and fully characterized by multinuclear NMR (1H, 13C) and IR spectroscopy, differential scanning calorimetry (DSC), and elemental analyses. Hydrazinium ( 3 ) and 4‐amino‐1,2,4‐triazolium ( 7 ) salts crystallized in the monoclinic space group P2(1)/n and have calculated densities of 1.820 and 1.764 g cm?3, respectively. The densities of the energetic salts range between 1.63 and 1.79 g cm?3, as measured by a gas pycnometer. Detonation pressures and detonation velocities were calculated to be 23.1–32.5 GPa and 7740–8790 m s?1, respectively.  相似文献   

20.
A series of new energetic salts based on 4‐nitro‐3‐(5‐tetrazole)furoxan (HTNF) has been synthesized. All of the salts have been fully characterized by nuclear magnetic resonance (1H and 13C), infrared (IR) spectroscopy, elemental analysis, and differential scanning calorimetry (DSC). The crystal structures of neutral HTNF ( 3 ) and its ammonium ( 4 ) and N‐carbamoylguanidinium salts ( 9 ) have been determined by single‐crystal X‐ray diffraction analysis. The densities of 3 and its nine salts were found to range from 1.63 to 1.84 g cm?3. Impact sensitivities have been determined by hammer tests, and the results ranged from 2 J (very sensitive) to >40 J (insensitive). Theoretical performance calculations (Gaussian 03 and EXPLO 5.05) provided detonation pressures and velocities for the ionic compounds 4 – 12 in the ranges 25.5–36.2 GPa and 7934–8919 m s?1, respectively, which make them competitive energetic materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号