首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Condensation of 1‐methyl‐β‐carboline‐3‐carbaldehyde with ethyl azidoacetate and subsequent thermolysis of the resulting azidopropenoate was used to [c] annulate a pyrrole ring onto the β‐carboline moiety, thus producing the first example of the pyrrolo[3,2‐c]‐β‐carboline ring system. The latter ring system results from cyclization at the C‐4 carbon, whereas cyclization at the N‐2 nitrogen atom also occurs to form a pyrazolo[3,2‐c]‐β‐carboline ring system. Condensation of β‐carboline‐1‐carbaldehyde with ethyl azidoacetate produced a non‐isolable intermediate, which immediately underwent cyclization, however in this case cyclization occurred via attack at the ester and the azide remained intact. The resulting 5‐azidocanthin‐6‐one was transformed to the first examples of 5‐aminocanthin‐6‐ones. β‐Carboline‐1,3‐dicarbaldehyde failed to give an acceptable reaction with ethyl azidoacetate, but did undergo selective condensation with dimethyl acetylene dicarboxylate at the C‐1 carbaldehyde with concomitant cyclization to form a highly functionalized 2‐formyl‐canthine derivative.  相似文献   

2.
A new and efficient cyclization reaction has been developed to synthesize cyclic α,α‐disubstituted β‐amino esters via iron‐catalyzed intramolecular aminomethyloxygenative cyclization of diazo compounds with N,O‐aminal under mild reaction conditions. A broad range of hydroxy‐α‐diazoesters with different substituents and various N,O‐aminals were compatible with this protocol, affording the corresponding α,α‐disubstituted β‐amino esters bearing a five‐ to eight‐membered oxacycle in good yields.  相似文献   

3.
β‐Lactams with contiguous tetra‐ and trisubstituted carbon centers were prepared in a highly enantioselective manner through 4‐exo‐trig cyclization of axially chiral enolates generated from readily available α‐amino acids. Use of a weak base (metal carbonate) in a protic solvent (EtOH) is the key to the smooth production of β‐lactams. Use of the weak base is expected to generate the axially chiral enolates in a very low concentration, which undergo intramolecular conjugate addition without suffering intermolecular side reactions. Highly strained β‐lactam enolates thus formed through reversible intramolecular conjugate addition (4‐exo‐trig cyclization) of axially chiral enolates undergo prompt protonation by EtOH in the reaction media (not during the work‐up procedure) to give β‐lactams in up to 97 % ee.  相似文献   

4.
Synthesis of polysubstituted 2‐pyridones and their analogues from β‐keto amides via self‐condensation cyclization is described. Notable advantages include mild reaction conditions, reduced synthetic steps, high yields, and a readily available starting materials. Further mechanistic studies suggest that the transformation proceeds through self‐condensation, intramolecular nucleophilic cyclization, and elimination.  相似文献   

5.
In an approach to the biologically important 6‐azabicyclo[3.2.1]octane ring system, the scope of the tandem 4‐exo‐trig carbamoyl radical cyclization—dithiocarbamate group transfer reaction to ring‐fused β‐lactams is evaluated. β‐Lactams fused to five‐, six‐, and seven‐membered rings are prepared in good to excellent yield, and with moderate to complete control at the newly formed dithiocarbamate stereocentre. No cyclization is observed with an additional methyl substituent on the terminus of the double bond. Elimination of the dithiocarbamate group gives α,β‐ or β,γ‐unsaturated lactams depending on both the methodology employed (base‐mediated or thermal) and the nature of the carbocycle fused to the β‐lactam. Fused β‐lactam diols, obtained from catalytic OsO4‐mediated dihydroxylation of α,β‐unsaturated β‐lactams, undergo semipinacol rearrangement via the corresponding cyclic sulfite or phosphorane to give keto‐bridged bicyclic amides by exclusive N‐acyl group migration. A monocyclic β‐lactam diol undergoes Appel reaction at a primary alcohol in preference to semipinacol rearrangement. Preliminary investigations into the chemo‐ and stereoselective manipulation of the two carbonyl groups present in a representative 7,8‐dioxo‐6‐azabicyclo[3.2.1]octane rearrangement product are also reported.  相似文献   

6.
Dedicated to Professor Jean Morel for his retirement The title compounds 4 have been prepared from suitable β‐amino‐ alcohol 2 and phthalic anhydride ( 5 ) in a three‐step sequence in moderate to good yields (58‐94%). The key step of this methodology is based on an intramolecular O‐cationic cyclization involving N‐acyliminium species. The high levels of the observed chemoselectivity during the intermolecular or intramolecular cyclization were also discussed.  相似文献   

7.
Several pyrido[2,3‐e]pyrimidine fused with other rings have been prepared by intramolecular cyclization of 5‐(4‐chlorophenyl)‐2‐hydrazino‐benzo [6,7]cyclohepta‐[1,2‐b]pyrido[2,3‐e]pyrimidine‐4‐one ( 1 ) with acids, carbon disulfide to form triazole derivatives ( 2,4 ), halo‐ketones to give triazine derivative ( 5 ), β‐ketoesters, β‐cyanoesters, and β‐diketones to yield 2‐(1‐pyrazolyl) derivatives ( 7,9,10 ), and aldehydes to form arylhydrazone derivatives ( 11a,b ) which cyclized to form triazoles ( 12a,b ). Also, acyclic N‐nucleosides are prepared by heating under reflux 2‐hydrazino‐benzo[6,7]cyclohepta[1,2‐b]pyrido[2,3‐e] pyrimidin‐4‐one ( 1 ) with xylose and glucose to give the corresponding acyclic N‐nucleosides ( 13a,b ) which are cyclized to afford the corresponding protected tetra and penta–O‐acetate C‐nucleosides ( 14a,b ). Deacetylating of the latter nucleosides afforded the free acyclic C‐nucleosides ( 15a,b ). © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:34–43, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20248  相似文献   

8.
The radical polymerization of Ntert‐butyl‐N‐allylacrylamide (t‐BAA) was carried out in a dimethyl sulfoxide/H2O mixture in the presence of β‐cyclodextrin (β‐CD). The polymerization proceeded with the complete cyclization of the t‐BAA unit and yielded optically active poly(t‐BAA). The IR spectrum of the obtained polymer showed that the cyclic structure in the polymer was a five‐membered ring. The optical activity of poly(t‐BAA) increased with an increasing molar ratio of β‐CD to the t‐BAA monomer. The interaction of β‐CD with t‐BAA was confirmed by 1H NMR and 13C NMR analyses of the polymerization system. It is suggested that interaction of the t‐BAA monomer with the hydrophobic cavity of β‐CD plays an important role in the asymmetric cyclopolymerization of t‐BAA. The radical copolymerization of t‐BAA with styrene (St), methyl methacrylate, ethyl methacrylate, or benzyl methacrylate (BMA) also produced optically active copolymers with a cyclic structure from the t‐BAA unit. St and BMA carrying a phenyl group were predicted to compete with t‐BAA for interaction with β‐CD in the copolymerization system. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2098–2105, 2000  相似文献   

9.
Herein, we describe an unprecedented cascade reaction to β‐stereogenic γ‐lactams involving Pd(II)‐catalyzed enantioselective aliphatic methylene C(sp3)?H alkenylation–aza‐Wacker cyclization through syn‐aminopalladation. Readily available 3,3′‐substituted BINOLs are used as chiral ligands, providing the corresponding γ‐lactams with broad scope and high enantioselectivities (up to 98 % ee).  相似文献   

10.
In the title compound, C13H13N5O4·H2O (4,5′‐cyclo­wyosine·H2O), the cyclization forces a syn arrangement of the aglycon with respect to the sugar moiety. The ribo­furan­ose part of the mol­ecule displays a β‐d configuration with an envelope C1′‐endo pucker. The mol­ecules are arranged in columns along the short a axis and are linked to water mol­ecules through O—H?O and O—H?N hydrogen bonds.  相似文献   

11.
Oxidosqualene cyclases catalyze the transformation of oxidosqualene ( 1 ) into numerous cyclic triterpenes. Enzymatic reactions of 24‐noroxidosqualene ( 8 ) and 30‐noroxidosqualene ( 9 ) with Euphorbia tirucalli β‐amyrin synthase were conducted to examine the role of the branched methyl groups of compound 1 in the β‐amyrin biosynthesis. Substrate 8 almost exclusively afforded 30‐nor‐β‐amyrin (>95.5 %), which was produced through a normal cyclization pathway, along with minor products (<4.5 %). However, a lack of the Me‐30 group (analogue 9 ) resulted in significantly high production of premature cyclization products, including 6/6/6/5‐fused tetracyclic and 6/6/6/6/5‐fused pentacyclic skeletons (64.6 %). In addition, the fully cyclized product (35.4 %) having the 6/6/6/6/6‐fused pentacycle was produced; however, the normally cyclized product, 29‐nor‐β‐amyrin was present in only 18.6 % of these products. The conversion yield of substrate 8 possessing a Z‐Me group at the terminus was approximately twofold greater than that of compound 9 with an E‐Me group. Thus, the Me‐30 group is essential for the correct folding of a chair–chair–chair–boat–boat conformation of compound 1 for the production of the β‐amyrin scaffold, whereas the Me‐24 group exerts little influence on the normal polycyclization cascade. Here, we show that the Me‐30 group plays critical roles in constructing the ordered architecture of a chair–chair–chair–boat–boat structure, in facilitating the ring‐expansion reactions, and in performing the final deprotonation reaction at the correct position.  相似文献   

12.
N‐phenoxyacetyl‐1,3‐oxazolidine derivatives were synthesized by the cyclization and acylation with β‐amino alcohol, ketone, and phenoxyacetyl chloride as the starting materials. All compounds were characterized by IR, 1H NMR, 13C NMR, ESI‐MS, and elemental analysis. The configuration of 4a was determined by X‐ray crystallography. The preliminary biological tests showed that all products could protect soybean against injury caused by 2,4‐D butylate to some extent.  相似文献   

13.
Ortho‐, meta‐, or para‐nitro benzoic acid were refluxed with excess SOCl2 to give acyl chloride, which condensed with β‐amino alcohol in the presence of Et3N in dichloromethane to afford β‐hydroxyamide; finally, sulphonation and cyclization were simultaneously conducted to afford 1,3‐thiazoline derivatives. Fungicidal activity of these new thiazolines against eight agrocultural fungi were evaluated, and two of this type of compounds displayed good fungicidal activity comparable or superior to commercial fungicide chlorothalonil against two fungi at a concentration of 50 mg/L. J. Heterocyclic Chem., (2011).  相似文献   

14.
Substituted propargyl acetates are converted into 4‐boryl‐2(5H)‐furanones upon thermolysis in the presence of an N‐heterocyclic carbene borane (NHC‐borane) and di‐tert‐butyl peroxide. The acetyl methyl group is lost during the reaction as methane. Evidence suggests that the reaction proceeds by a sequence of radical events including: 1) addition of an NHC‐boryl radical to the triple bond; 2) cyclization of the resultant β‐borylalkenyl radical to the ester carbonyl group; 3) β‐scission of the so‐formed alkoxy radical to provide the 4‐boryl‐2(5H)‐furanone and a methyl radical; and 4) hydrogen abstraction from the NHC‐borane to return the initial NHC‐boryl radical and methane.  相似文献   

15.
A series of 2‐amino‐7‐methoxy‐4‐aryl‐4H‐chromene‐3‐carbonitrile compounds 2 were obtained by condensation of 3‐methoxyphenol with β‐dicyanostyrenes 1 in absolute ethanol containing piperidine. The intermediate enamines 3 were prepared by compounds 2 with 5‐substituted‐1,3‐cyclohexanedione using p‐toluenesuflonic acid (TsOH) as catalyst. The title compounds 11‐amino‐3‐methoxy‐8‐substituted‐12‐aryl‐8,9‐dihydro‐7H‐chromeno[2,3‐b]quinolin‐10(12H)‐one 4 were synthesized by cyclization of the intermediate enamines 3 in THF with K2CO3 /Cu2Cl2 as catalyst. The structures of all compounds were characterized by elemental analysis, IR, MS, and 1H NMR spectra. The crystal structure of compound 4i was determined by single‐crystal X‐ray diffraction analysis.  相似文献   

16.
A MgII‐mediated catalytic asymmetric dearomatization (CADA) reaction of β‐naphthols has been developed. The reaction proceeds under ambient temperature and give a series of chiral trisubstituted olefins with good chemoselectivities, Z/E ratios, and excellent enantioselectivities. A fluorinated β‐naphthol was designed to generate chiral organofluorine skeletons through the current CADA reaction. Moreover, an interesting tandem cyclization reaction was observed in the following transformation process through an undiscovered intramolecular hydride transfer pathway.  相似文献   

17.
Enantiopure, Boc‐protected alkoxyamines 12 and 13 , derived from the readily available homoallylic alcohols 4 via a reaction that involves either inversion or retention of configuration, undergo a diastereoselective Pd‐catalyzed ring‐closing carbonylative amidation to produce isoxazolidines 16/17 (≤50:1 diastereoisomer ratio (d.r.)) that can be readily converted into the N‐Boc‐protected esters of β‐amino‐δ‐hydroxy acids and their γ‐substituted homologues 37 . The key carbonylative cyclization proceeds through an unusual syn addition of the palladium and the nitrogen nucleophile across the C?C bond ( 19 → 21 ), as revealed by the reaction of 15 , which afforded isoxazolidine 18 with high diastereoselectivity.  相似文献   

18.
S‐((Phenylsulfonyl)difluoromethyl)thiophenium salts were designed and prepared by a triflic acid catalyzed intramolecular cyclization of ortho‐ethynyl aryldifluoromethyl sulfanes. The thiophenium salts were found to be efficient as electrophilic difluoromehtylating reagents for introduction of a CF2H group to sp3‐hybridized carbon nucleophiles such as of β‐ketoesters and dicyanoalkylidenes. The (phenylsulfonyl)difluoromethyl group can be readily transformed into CF2H under mild reaction conditions. Enantioselective electrophilic difluoromethylation was also achieved in the presence of bis(cinchona) alkaloids.  相似文献   

19.
The reaction pathway of an enantioselective 5‐endotrig‐type cyclization of 3‐alkenoic acids catalyzed by a chiral palladium–spiro‐bis(isoxazoline) complex, Pd–SPRIX, has been studied by density functional theory calculations. The most plausible pathway involves intramolecular nucleophilic attack of the carboxylate moiety on the C?C double bond activated by Pd–SPRIX and β‐H elimination from the resulting organopalladium intermediate. The enantioselectivity was determined in the cyclization step through the formation of a π‐olefin complex, in which one of the two enantiofaces of the olefin moiety was selected. The β‐H elimination occurs via a seven‐membered cyclic structure in which the acetate ligand plays a key role in lowering the activation barrier of the transition state. In the elimination step, the SPRIX ligand was found to behave as a monodentate ligand due to the hemilability of one of the isoxazoline units thereby facilitating the elimination. Natural population analysis of this pathway showed that the more weakly electron‐donating SPRIX ligand, compared with the bis(oxazoline) ligand, BOX, facilitated the formation of the π‐olefin complex intermediate, leading to a smaller overall activation energy and a higher reactivity of the Pd–SPRIX catalyst.  相似文献   

20.
S‐((Phenylsulfonyl)difluoromethyl)thiophenium salts were designed and prepared by a triflic acid catalyzed intramolecular cyclization of ortho‐ethynyl aryldifluoromethyl sulfanes. The thiophenium salts were found to be efficient as electrophilic difluoromehtylating reagents for introduction of a CF2H group to sp3‐hybridized carbon nucleophiles such as of β‐ketoesters and dicyanoalkylidenes. The (phenylsulfonyl)difluoromethyl group can be readily transformed into CF2H under mild reaction conditions. Enantioselective electrophilic difluoromethylation was also achieved in the presence of bis(cinchona) alkaloids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号