首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Fusion of two N‐annulated perylene (NP) units with a fused porphyrin dimer along the S0–S1 electronic transition moment axis has resulted in new near‐infrared (NIR) dyes 1 a / 1 b with very intense absorption (ε>1.3×105 M ?1 cm?1) beyond 1250 nm. Both compounds displayed moderate NIR fluorescence with fluorescence quantum yields of 4.4×10?6 and 6.0×10?6 for 1 a and 1 b , respectively. The NP‐substituted porphyrin dimers 2 a / 2 b have also been obtained by controlled oxidative coupling and cyclodehydrogenation, and they showed superimposed absorptions of the fused porphyrin dimer and the NP chromophore. The excited‐state dynamics of all of these compounds have been studied by femtosecond transient absorption measurements, which revealed porphyrin dimer‐like behaviour. These new chromophores also exhibited good nonlinear optical susceptibility with large two‐photon absorption cross‐sections in the NIR region due to extended π‐conjugation. Time‐dependent density functional theory calculations have been performed to aid our understanding of their electronic structures and absorption spectra.  相似文献   

2.
The effect of the macrocyclic host, cucurbit[7]uril (CB7), on the photophysical properties of the 2‐(2′‐hydroxyphenyl)benzimidazole (HPBI) dye have been investigated in aqueous solution by using ground‐state absorption and steady‐state and time‐resolved fluorescence measurements. All three prototropic forms of the dye (cationic, neutral, and anionic) form inclusion complexes with CB7, with the largest binding constant found for the cationic form (K≈2.4×106 M ?1). At pH≈4, the appearance of a blue emission band upon excitation of the HPBI cation in the presence of CB7 indicates that encapsulation into the CB7 cavity retards the deprotonation process of the excited cation, and hence reduces its subsequent conversion to the keto form. Excitation of the neutral form (pH≈8.5), however, leads to an increase in the keto form fluorescence, indicating an enhanced excited‐state intramolecular proton‐transfer process for the encapsulated dye. In both the ground and excited states, the two pKa values of the HPBI dye show upward shifts in the presence of CB7. The prototropic equilibrium of the CB7‐complexed dye is represented by a six‐state model, and the pH‐dependent changes in the binding constants have been analyzed accordingly. It has been observed that the calculated pKa values using this six‐state model match well with the values obtained experimentally. The changes in the pKa values in the presence of CB7 have been corroborated with the modulation of the proton‐transfer process of the dye within the host cavity.  相似文献   

3.
Directly 2,12‐ and 2,8‐linked ZnII porphyrin oligomers were prepared from 2,12‐ and 2,8‐diborylated ZnII porphyrin by a cross platinum‐induced coupling with a 2‐borylated ZnII porphyrin end unit followed by a triphenylphosphine (PPh3)‐mediated reductive elimination. Comparative studies on the steady‐state absorption and fluorescence spectra and the fluorescence lifetimes led to a conclusion that the exciton in the S1 state is delocalized over approximately four and two ZnII porphyrin units for 2,12‐ and 2,8‐linked ZnII porphyrin arrays, respectively.  相似文献   

4.
The facile synthesis of Group 9 RhIII porphyrin‐aza‐BODIPY conjugates that are linked through an orthogonal Rh?C(aryl) bond is reported. The conjugates combine the advantages of the near‐IR (NIR) absorption and intense fluorescence of aza‐BODIPY dyes with the long‐lived triplet states of transition metal rhodium porphyrins. Only one emission peak centered at about 720 nm is observed, irrespective of the excitation wavelength, demonstrating that the conjugates act as unique molecules rather than as dyads. The generation of a locally excited (LE) state with intramolecular charge‐transfer (ICT) character has been demonstrated by solvatochromic effects in the photophysical properties, singlet oxygen quantum yields in polar solvents, and by the results of density functional theory (DFT) calculations. In nonpolar solvents, the RhIII conjugates exhibit strong aza‐BODIPY‐centered fluorescence at around 720 nm (ΦF=17–34 %), and negligible singlet oxygen generation. In polar solvents, enhancements of the singlet‐oxygen quantum yield (ΦΔ=19–27 %, λex=690 nm) have been observed. Nanosecond pulsed time‐resolved absorption spectroscopy confirms that relatively long‐lived triplet excited states are formed. The synthetic methodology outlined herein provides a useful strategy for the assembly of functional materials that are highly desirable for a wide range of applications in material science and biomedical fields.  相似文献   

5.
Nonmesogenic 2,3,12,13‐tetrabromo‐5,10,15,20‐tetrakis(4‐butoxyphenyl)porphyrin crystallizes as the title 1,2‐dichloroethane solvate, C60H58Br4N4O4·C2H4Cl2. The porphyrin ring shows a nonplanar conformation, with an average mean plane displacement of the β‐pyrrole C atoms from the 24‐atom (C20N4) core of ±0.50 (3) Å. The 1,2‐dichloroethane solvent is incorporated between the porphyrin units and induces the formation of one‐dimensional chains via interhalogen Cl...Br and butyl–aryl C—H...π interactions. These chains are oriented along the unit‐cell a axis, with the macrocyclic ring planes lying almost parallel to the (010) plane. The chains are arranged in an offset fashion by aligning the butoxy chains approximately above or below the faces of the adjacent porphyrin core, resulting in decreased interporphyrin π–π interactions, and they are held together by weak intermolecular (C—Br...π, C—H...π and C—H...Br) interactions. The nonplanar geometry of the macrocyclic ring is probably due to the weak interporphyrin interactions induced by the solvent molecule and the peripheral butoxy groups. The nonplanarity of the mesogens could influence the mesogenic behaviour differently relative to planar porphyrin mesogens.  相似文献   

6.
2‐(2‐Hydroxy‐phenyl)‐4(3H)‐quinazolinone (HPQ), an organic fluorescent material that exhibits fluorescence by the excited‐state intramolecular proton‐transfer (ESIPT) mechanism, forms two different polymorphs in tetrahydrofuran. The conformational twist between the phenyl and quinazolinone rings of HPQ leads to different molecular packing in the solid state, giving structures that show solid‐state fluorescence at 497 and 511 nm. HPQ also shows intense fluorescence in dimethyl formamide (DMF) solution and selectively detects Zn2+ and Cd2+ ions at micromolar concentrations in DMF. Importantly, HPQ not only detects Zn2+ and Cd2+ ions selectively, but it also distinguishes between the metal ions with a fluorescence λmax that is blue‐shifted from 497 to 420 and 426 nm for Zn2+ and Cd2+ ions, respectively. Hence, tunable solid‐state fluorescence and selective metal‐ion‐sensor properties were demonstrated in a single organic material.  相似文献   

7.
Cyclopenta[hi]aceanthrylenes (CPAs) have been functionalized at two of the peripheral positions with electronically inert trimethylsilylethynyl ( 1 ), as well as with electron‐donating 4‐ethynyl‐N,N‐dimethylaniline ( 2 ), ethynyl ZnIIphthalocyanine ( 3 ), and ethynyl ZnIIporphyrin ( 4 ) units. Consistent with X‐ray crystal structures of 2 and 4 , analyses of absorption and fluorescence of 2 – 4 point to strong electronic communication between the CPA and the peripheral units, affording quadrupolar electron donor‐acceptor‐donor charge‐transfer conjugates. By virtue of their quadrupolar/dipolar charge‐transfer characters in the excited state, 2 – 4 exhibit fluoro‐solvatochromism. Transient absorption spectroscopy confirmed delocalized quadrupolar ground states and formation of weakly solvent stabilized quadrupolar singlet excited states. The latter transform into strongly stabilized dipolar excited states before deactivating to the ground state in 2 and give rise to a fully charge separated state in 3 and 4 .  相似文献   

8.
Trifluoroacetic acid‐catalyzed condensation of pyrrole with electron‐deficient and sterically hindered 3,5‐bis(trifluoromethyl)benzaldehyde results in the unexpected production of a series of meso‐3,5‐bis(trifluoromethyl)phenyl‐substituted expanded porphyrins including [22]sapphyrin 2 , N‐fused [22]pentaphyrin 3 , [26]hexaphyrin 4 , and intact [32]heptaphyrin 5 together with the conventional 5,10,15,20‐tetrakis(3,5‐bis(trifluoromethyl)phenyl)porphyrin 1 . These expanded porphyrins are characterized by mass spectrometry, 1H NMR spectroscopy, UV/Vis/NIR absorption spectroscopy, and fluorescence spectroscopy. The optical and electrochemical measurements reveal a decrease in the HOMO–LUMO gap with increasing size of the conjugated macrocycles, and in accordance with the trend, the deactivation of the excited singlet state to the ground state is enhanced.  相似文献   

9.
A platinum complex with the 6‐(7‐benzothiazol‐2′‐yl‐9,9‐diethyl‐9H‐fluoren‐2‐yl)‐2,2′‐bipyridinyl ligand ( 1 ) was synthesized and the crystal structure was determined. UV/Vis absorption, emission, and transient difference absorption of 1 were systematically investigated. DFT calculations were carried out on 1 to characterize the electronic ground state and aid in the understanding of the nature of low‐lying excited electronic states. Complex 1 exhibits intense structured 1π–π* absorption at λabs<440 nm, and a broad, moderate 1M LCT/1LLCT transition at 440–520 nm in CH2Cl2 solution. A structured 3ππ*/3M LCT emission at about 590 nm was observed at room temperature and at 77 K. Complex 1 exhibits both singlet and triplet excited‐state absorption from 450 nm to 750 nm, which are tentatively attributed to the 1π–π* and 3π–π* excited states of the 6‐(7‐benzothiazol‐2′‐yl‐9,9‐diethyl‐9H‐fluoren‐2‐yl)‐2,2′‐bipyridine ligand, respectively. Z‐scan experiments were conducted by using ns and ps pulses at 532 nm, and ps pulses at a variety of visible and near‐IR wavelengths. The experimental data were fitted by a five‐level model by using the excited‐state parameters obtained from the photophysical study to deduce the effective singlet and triplet excited‐state absorption cross sections in the visible spectral region and the effective two‐photon absorption cross sections in the near‐IR region. Our results demonstrate that 1 possesses large ratios of excited‐state absorption cross sections relative to that of the ground‐state in the visible spectral region; this results in a remarkable degree of reverse saturable absorption from 1 in CH2Cl2 solution illuminated by ns laser pulses at 532 nm. The two‐photon absorption cross sections in the near‐IR region for 1 are among the largest values reported for platinum complexes. Therefore, 1 is an excellent, broadband, nonlinear absorbing material that exhibits strong reverse saturable absorption in the visible spectral region and large two‐photon‐assisted excited‐state absorption in the near‐IR region.  相似文献   

10.
The intramolecular proton transfer in a newly synthesized molecule, 2‐(2′‐hydroxyphenyl)oxazolo[4,5‐b]pyridine (HPOP) is studied using UV‐visible absorption, fluorescence emission, fluorescence excitation and time‐resolved fluorescence spectroscopy. In the ground state, the molecule exists as cis‐ and trans‐enol in all the solvents. However, in dioxane, alcohols, acetonitrile, dimethylformamide and dimethylsulfoxide the keto tautomer is also observed in the ground state. Dual fluorescence is observed in HPOP where the large Stoke shifted emission is due to emission from the excited‐state intramolecular proton transfer product, whereas the other emission is the normal emission from enol form. The fluorescence (both normal and tautomer emission) of HPOP is less than those of corresponding benzoxazole and imidazopyridine derivatives. This reveals that the nonradiative decay becomes more efficient upon substitution of electronegative atom on the charge acceptor group. The pH studies substantiate the conclusion that (unlike in its imidazole analog) the third ground state species is the keto tautomer and not the monoanion. The effect of temperature on cis‐enol‐trans‐enol‐keto equilibrium and the nonradiative deactivation from the excited state are also investigated.  相似文献   

11.
3‐(2,2′‐Bipyridyl)‐substituted iminocoumarin molecules (compounds 1 and 2 ) exhibit dual fluorescence. Each molecule has one electron donor and two electron acceptors that are in conjugation, which leads to fluorescence from two independent charge transfer (CT) states. To account for the dual fluorescence, we subscribe to a kinetic model in which both CT states form after rapid decays from the directly accessed S1 and S2 excited states. Due to the slow internal conversion from S2 to S1, or more likely the slow interconversion between the two subsequently formed CT states, dual emission is allowed to occur. This hypothesis is supported by the following evidence: 1) the emission at short and long ends of the spectrum originates from two different excitation spectra, which eliminates the possibility that dual emission occurs after an adiabatic reaction at the S1 level. 2) The fluorescence quantum yield of compound 2 grows with increasing excitation wavelength, which indicates that the high‐energy excitation elevates the molecule to a weakly emissive state that does not internally convert to the low‐energy, highly emissive state. The intensity of the two emission bands of 1 is tunable through the specific interactions between either of the two electron acceptors with another species, such as Zn2+ in the current demonstration. Therefore, the development of ratiometric fluorescent indicators based on the dual‐emitting iminocoumarin system is conceivable. Further fundamental studies on this series of compounds using time‐resolved spectroscopic techniques, and explorations of their applications will be carried out in the near future.  相似文献   

12.
This paper presents experimental and theoretical investigations into excited‐state intramolecular proton transfer (ESIPT) in new chromophores with hydroxyl and imino groups under one‐ and two‐photon excitation. The results show that internal hydrogen bonding exhibits a remarkable influence on the maximum absorption wavelength of 2‐[(4′‐N,N‐diethylaminodiphenylethylene‐4‐ylimino)methyl]phenol ( C1 ) and 2‐[(4′‐methoxyl‐diphenylethylene‐4‐ylimino)methyl]phenol ( C3 ). Compounds C1 and C3 exhibit well‐separated dual fluorescence emission bands under one‐ and two‐photon excitation. The second fluorescence peaks of C1 and C3 are characterized by much larger Stokes shift than the first normal peaks (ca. 140 vs. 30 nm). 4‐[(4′‐N,N‐Diethylaminodiphenylethylene‐4‐ylimino)methyl]phenol ( C2 ) and 4‐[(4′‐methoxyldiphenylethylene‐4‐ylimino)methyl]phenol ( C4 ) display single emission bands with small Stokes shifts (ca. 30 nm) in various solvents under one‐ and two‐photon excitation. Furthermore, the first emission maxima of C1 and C3 are almost identical to the maximum fluorescence emission wavelengths of C2 and C4 , respectively. These results show that C1 and C3 can undergo ESIPT via a reasonable six‐membered ring, while there is no ESIPT in C2 and C4 under one‐ and two‐photon excitation. Compounds C1 and C2 have larger two‐photon absorption cross‐sections under various near‐infrared laser frequencies tuned from 700 to 880 nm. Molecular geometry optimization of the phototautomers (enol and keto) was performed to analyze the experimental results. The possibility of using these chromophores for metal ions as chemosensors of was thoroughly investigated. In DMF C3 exhibits excellent sensing responses to Zn2+ and Fe3+ ions through a greatly increased greatly and a largely reduced emission, respectively. In methanol disappearance of ESIPT emission with added Zn2+ ions confirms its existence. The binding constants of C3 with Zn2+ and Fe3+ ions in DMF are also estimated.  相似文献   

13.
We report here the design and synthesis of porphyrin–metallocene dyads consisting of a metallocene [either ferrocene or mixed sandwich η5‐[C5H4(COOH)]Co(η4‐C4Ph4) connected via an ester linkage at meso phenyl position of either free‐base or zinc porphyrin. All these dyad systems were characterized by various spectroscopic and electrochemical methods. A dimeric form of this molecule was observed in the X‐ray crystal structure of Zn‐TTPCo. The absorption spectra of all four dyads indicated the absence of electronic interactions between porphyrin macrocycle and metallocene in the ground state. However, interestingly, in all four dyads, fluorescence emission of the porphyrin was quenched (19–55%) as compared to their monomeric units. The quenching was more pronounced in ferrocene derivatives rather than cobaltocenyl derivatives. The emission quenching can be attributed to the excited‐state intramolecular photoinduced electron transfer from metallocene to singlet excited state of porphyrin and the electron‐transfer rates (kET) were established in the range 1.51 × 108 to 1.11 × 109 s?1. They were found to be solvent dependent.  相似文献   

14.
Recent photofragment fluorescence excitation (PHOFEX) spectroscopy experiments have observed the Ã1A″ singlet excited state of isocyanogen (CNCN) for the first time. The observed spectrum is not completely assigned and significant questions remain about the excited states of this system. To provide insight into the energetically accessible excited states of CNCN, optimized geometries, harmonic vibrational frequencies, and excitation energies for the first three singlet excited states are determined using equation‐of‐motion coupled‐cluster theory with singles and doubles (EOM‐CCSD) and correlation‐consistent basis sets. Additionally, excited state coupled‐cluster methods which approximate the contributions from triples (CC3) are utilized to estimate the effect of higher‐order correlation on the energy of each excited state. For the Ã1A″ state, our best estimate for T0 is about 42,200 cm?1, in agreement with the experimentally estimated upper limit for the zero‐point level of 42,523 cm?1. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

15.
The synthesis and the characterization of two porphyrin coordination cages are reported. The design of the cage formation is based on the coordination of silver(I) ions to the pyridyl units of 3‐pyridyl appended porphyrins. 1H/109Ag NMR spectroscopy, and diffusion‐ordered spectroscopy (DOSY) experiments demonstrate that both the free base porphyrin 2H‐TPyP and the Zn‐porphyrin Zn‐TPyP form the closed cages, [ Ag4(2H‐TPyP)2 ]4+ and [ Ag4(Zn‐TPyP)2 ]4+, respectively, upon addition of two equivalents of Ag+. The complexation processes are characterized in details by means of absorption and emission spectroscopy in diluted CH2Cl2 solutions. The data are discussed in the frame of the point‐dipole exciton coupling theory; the two porphyrin monomers, in fact, experience a rigid face‐to‐face geometry in the cages and a weak inter‐porphyrin exciton coupling. An intermediate species is observed, for Zn‐TPyP , in a porphyrin/Ag+ stoichiometric ratio of about 1:0.5 and is tentatively ascribed to an oblique open form. The occurrence of a photoinduced electron‐transfer reaction within the cages is excluded on the basis of the experimental outcomes and thermodynamic evaluations. Photophysical experiments evidence different reactivities of singlet and triplet excited states in the assemblies. A lower fluorescence quantum yield and triplet formation is discussed in relation to the constrained geometry of the complexes. Unusually long triplet excited state lifetimes are measured for the assemblies.  相似文献   

16.
Homo‐ and heteronuclear meso,meso‐(E)‐ethene‐1,2‐diyl‐linked diporphyrins have been prepared by the Suzuki coupling of porphyrinylboronates and iodovinylporphyrins. Combinations comprising 5,10,15‐triphenylporphyrin (TriPP) on both ends of the ethene‐1,2‐diyl bridge M210 (M2=H2/Ni, Ni2, Ni/Zn, H4, H2Zn, Zn2) and 5,15‐bis(3,5‐di‐tert‐butylphenyl)porphyrinato‐nickel(II) on one end and H2, Ni, and ZnTriPP on the other ( M211 ), enable the first studies of this class of compounds possessing intrinsic polarity. The compounds were characterized by electronic absorption and steady state emission spectra, 1H NMR spectra, and for the Ni2 bis(TriPP) complex Ni210 , single crystal X‐ray structure determination. The crystal structure shows ruffled distortions of the porphyrin rings, typical of NiII porphyrins, and the (E)‐C2H2 bridge makes a dihedral angle of 50° with the mean planes of the macrocycles. The result is a stepped parallel arrangement of the porphyrin rings. The dihedral angles in the solid state reflect the interplay of steric and electronic effects of the bridge on interporphyrin communication. The emission spectra in particular, suggest energy transfer across the bridge is fast in conformations in which the bridge is nearly coplanar with the rings. Comparisons of the fluorescence behaviour of H410 and H2Ni10 show strong quenching of the free base fluorescence when the complex is excited at the lower energy component of the Soret band, a feature associated in the literature with more planar conformations. TDDFT calculations on the gas‐phase optimized geometry of Ni210 reproduce the features of the experimental electronic absorption spectrum within 0.1 eV.  相似文献   

17.
A series of twelve new 2‐[(o‐ and p‐substituted)aminophenyl]‐3H‐5‐[(o‐ and p‐substituted)phenyl]‐7‐chloro‐1,4‐benzodiazepines, which have possible pharmacological properties has been obtained. The synthesis was carried out following six steps. The structure of all products was corroborated by ir, 1H nmr, 13C nmr and ms. In addition for the compound 2‐(o‐chloroaminophenyl)‐3H‐5‐(o‐fluorophenyl)‐7‐chloro‐1,4‐benzodiazepine 7, its structure was confirmed by X‐ray diffraction.  相似文献   

18.
Seven derivatives of 1,2‐dicarbadodecaborane (ortho‐carborane, 1,2‐C2B10H12) with a 1,3‐diethyl‐ or 1,3‐diphenyl‐1,3,2‐benzodiazaborolyl group on one cage carbon atom were synthesized and structurally characterized. Six of these compounds showed remarkable low‐energy fluorescence emissions with large Stokes shifts of 15100–20260 cm?1 and quantum yields (ΦF) of up to 65 % in the solid state. The low‐energy fluorescence emission, which was assigned to a charge‐transfer (CT) transition between the cage and the heterocyclic unit, depended on the orientation (torsion angle, ψ) of the diazaborolyl group with respect to the cage C? C bond. In cyclohexane, two compounds exhibited very weak dual fluorescence emissions with Stokes shifts of 15660–18090 cm?1 for the CT bands and 1960–5540 cm?1 for the high‐energy bands, which were assigned to local transitions within the benzodiazaborole units (local excitation, LE), whereas four compounds showed only CT bands with ΦF values between 8–32 %. Two distinct excited singlet‐state (S1) geometries, denoted S1(LE) and S1(CT), were observed computationally for the benzodiazaborolyl‐ortho‐carboranes, the population of which depended on their orientation (ψ). TD‐DFT calculations on these excited state geometries were in accord with their CT and LE emissions. These C‐diazaborolyl‐ortho‐carboranes were viewed as donor–acceptor systems with the diazaborolyl group as the donor and the ortho‐carboranyl group as the acceptor.  相似文献   

19.
Two self‐assembled supramolecular donor–acceptor triads consisting of AlIII porphyrin (AlPor) with axially bound naphthalenediimide (NDI) as an acceptor and tetrathiafulvalene (TTF) as a secondary donor are reported. In the triads, the NDI and TTF units are attached to AlIII on opposite faces of the porphyrin, through covalent and coordination bonds, respectively. Fluorescence studies show that the lowest excited singlet state of the porphyrin is quenched through electron transfer to NDI and hole transfer to TTF. In dichloromethane hole transfer to TTF dominates, whereas in benzonitrile (BN) electron transfer to NDI is the main quenching pathway. In the nematic phase of the liquid crystalline solvent 4‐(n‐pentyl)‐4′‐cyanobiphenyl (5CB), a spin‐polarized transient EPR spectrum that is readily assigned to the weakly coupled radical pair TTF.+NDI.? is obtained. The initial polarization pattern indicates that the charge separation occurs through the singlet channel and that singlet–triplet mixing occurs in the primary radical pair. At later time the polarization pattern inverts as a result of depopulation of the states with singlet character by recombination to the ground state. The singlet lifetime of TTF.+NDI.? is estimated to be 200–300 ns, whereas the triplet lifetime in the approximately 350 mT magnetic field of the X‐band EPR spectrometer is about 10 μs. In contrast, in dichloromethane and BN the lifetime of the charge separation is <10 ns.  相似文献   

20.
The red colour of the novel organonickel complex [(dppz)Ni(Mes)Br] (dppz = dipyrido[3,2‐a:2′,3′‐c]phenazine, Mes = 2,4,6‐trimethylphenyl) originates from long‐wavelength MLCT/L′LCT charge transfer bands. However, luminescence in dilute solution comes presumably from the 3π‐π* (phenazine) excited state. The red‐shifted emission exhibited in concentrated solutions is assigned to dimers. In the solid state emission is quenched. The crystal structure reveals two different types of π‐π stacking along the crystallographic a axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号