首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
本文设计合成了2种新型的间苯二甲酰腙类钳形受体。在DMSO和DMSO-H2O混合溶液中,通过紫外可见光谱分别考察了受体分子3a对F-, Cl-, Br-, I-, AcO-, HSO4-, H2PO4-和ClO4-的相互作用。结果表明,在DMSO溶液中,受体3a对F-,CH3COO-和H2PO4-有显著识别效果,溶液颜色由无色变为黄色,实现裸眼检测。在15%H2O-85%DMSO含水体系中,3a可高选择性识别CH3COO-。1H NMR滴定表明过量F-的加入使受体分子3a发生脱质子作用,探讨了主客体之间的作用机理。并直接用于水相中无机醋酸盐的直接显色检测。  相似文献   

2.
A new colorimetric recognition receptor 1 based on the dual capability containing NH binding sites of selectively sensing anionic guest species has been synthesized. Compared with other halide anions, its UV/Vis absorption spectrum in dimethyl sulfoxide showed the response toward the presence of fluoride anion with high selectivity, and also displayed dramatic color changes from colorless to yellow in the presence of TBAF (5 × 10^-5 mol/L). The similar UV/Vis absorption spectrum change also occurred when 1 was treated with AcO^- while a little change with H2PO^-4 and OH^-. Receptor 1 has almost not affinity abilities to Cl^-, Br^- and I^-. The binding ability of receptor 1 to fluoride with high selectivity over other halides contributes to the anion size and the ability of forming hydrogen bonding. While the different ability of binding with geometrically triangular (AcO^-), tetrahedral (H2PO^-4 ) and linear (OH^-) anions maybe result from their geometry configuration.  相似文献   

3.
An anion‐coordination‐based A4L6 (“A” denotes anion and “L” is ligand) tetrahedral cage was constructed by a C2‐symmetric bis‐bis(urea) ligand and phosphate anion, which showed reversible interconversion with the A2L3 triple helicate as a response to the template, concentration, or solvent. Notably, an unusual “peripheral” templation was found to be critical to stabilize the tetrahedral structure. This peripheral effect was utilized to assemble an “empty” A4L6 cage that allows the multi‐stimuli‐controlled capture/release of biologically important species such as choline and acetylcholine.  相似文献   

4.
The synthesis of a centrally functionalized, ribbon‐shaped [6]polynorbornane ligand L that self‐assembles with PdII cations into a {Pd2 L 4} coordination cage is reported. The shape‐persistent {Pd2 L 4} cage contains two axial cationic centers and an array of four equatorial H‐bond donors pointing directly towards the center of the cavity. This precisely defined supramolecular environment is complementary to the geometry of classic octahedral complexes [M(XY)6] with six diatomic ligands. Very strong binding of [Pt(CN)6]2? to the cage was observed, with the structure of the host–guest complex {[Pt(CN)6]@Pd2L4} supported by NMR spectroscopy, MS, and X‐ray data. The self‐assembled shell imprints its geometry on the encapsulated guest, and desymmetrization of the octahedral platinum species by the influence of the D4h‐symmetric second coordination sphere was evidenced by IR spectroscopy. [Fe(CN)6]3? and square‐planar [Pt(CN)4]2? were strongly bound. Smaller octahedral anions such as [SiF6]2?, neutral carbonyl complexes ([M(CO)6]; M=Cr, Mo, W) and the linear [Ag(CN)2]? anion were only weakly bound, showing that both size and charge match are key factors for high‐affinity binding.  相似文献   

5.
In this paper, we have illustrated the utilisation of a second-sphere coordination approach to construct supramolecular inclusion solids with varieties of guest molecules. A flexible molecule N,N,N′,N′-tetra-p-methylbenzyl-ethylenediamine (L1) bearing doubly protonated H-bond donors was designed, capable of forming N–H…Cl hydrogen bonds with a crystallographically unique chloride anion, to construct an anion-directed ligand. The pillared double-layered host framework was constructed by an anion-directed ligand and primary coordination sphere [CoCl4]2 ?  through weak C–H…Cl hydrogen-bonding interactions. A variety of guest molecules, such as p-anisaldehyde, 1,4-dimethoxy-2,5-bis(methoxymethyl)benzene, can be included, leading to the formation of novel supramolecular inclusion solids: [L1]·4[H]+·[CoCl4]2 ? ·2Cl·1.5[C8H8O2]·0.25[CH3OH] (1) and [L1]·4[H]+·[CoCl4]2 ? ·2Cl·1.5[C12H20O4]·0.5[CH3OH] (2).

We have presented herein the utilisation of a second-sphere coordination approach to construct supramolecular inclusion solids with a variety of guest molecules. A novel type of a pillared double-layered host framework was constructed by a second-sphere coordination between the anion-directed ligand (L1 = N,N,N′,N′-tetra-p-methylbenzyl-ethylenediamine) and [CoCl4]2 ?  through weak C–H…Cl hydrogen-bonding interaction, and a variety of guest molecules, such as p-anisaldehyde, 1,4-dimethoxy-2,5-bis(methoxymethyl)benzene, can be included, leading to the formation of supramolecular inclusion solids: [L1]·4[H]+·[CoCl4]2 ? ·2Cl·1.5[C8H8O2]·0.25[CH3OH] (1) and [L1]·4[H]+·[CoCl4]2 ? ·2Cl·1.5[C12H20O4]·0.5[CH3OH] (2)

  相似文献   

6.
Semirigid organic ligands can adopt different conformations to construct coordination polymers with more diverse structures when compared to those constructed from rigid ligands. A new asymmetric semirigid organic ligand, 4‐{2‐[(pyridin‐3‐yl)methyl]‐2H‐tetrazol‐5‐yl}pyridine ( L ), has been prepared and used to synthesize three bimetallic macrocyclic complexes and one coordination polymer, namely, bis(μ‐4‐{2‐[(pyridin‐3‐yl)methyl]‐2H‐tetrazol‐5‐yl}pyridine)bis[dichloridozinc(II)] dichloromethane disolvate, [Zn2Cl4(C12H10N6)2]·2CH2Cl2, ( I ), the analogous chloroform monosolvate, [Zn2Cl4(C12H10N6)2]·CHCl3, ( II ), bis(μ‐4‐{2‐[(pyridin‐3‐yl)methyl]‐2H‐tetrazol‐5‐yl}pyridine)bis[diiodidozinc(II)] dichloromethane disolvate, [Zn2I4(C12H10N6)2]·2CH2Cl2, ( III ), and catena‐poly[[[diiodidozinc(II)]‐μ‐4‐{2‐[(pyridin‐3‐yl)methyl]‐2H‐tetrazol‐5‐yl}pyridine] chloroform monosolvate], {[ZnI2(C12H10N6)]·CHCl3}n, ( IV ), by solution reaction with ZnX2 (X = Cl and I) in a CH2Cl2/CH3OH or CHCl3/CH3OH mixed solvent system at room temperature. Complex ( I ) is isomorphic with complex ( III ) and has a bimetallic ring possessing similar coordination environments for both of the ZnII cations. Although complex ( II ) also contains a bimetallic ring, the two ZnII cations have different coordination environments. Under the influence of the I? anion and guest CHCl3 molecule, complex ( IV ) displays a significantly different structure with respect to complexes ( I )–( III ). C—H…Cl and C—H…N hydrogen bonds, and π–π stacking or C—Cl…π interactions exist in complexes ( I )–( IV ), and these weak interactions play an important role in the three‐dimensional structures of ( I )–( IV ) in the solid state. In addition, the fluorescence properties of L and complexes ( I )–( IV ) were investigated.  相似文献   

7.
A highly electron‐deficient C3‐symmetric tris(bipyridyl) ligand was prepared in four steps and used for the coordination of Fe(OTf)2, thereby resulting in the homochiral assembly of a new family of robust tetrahedral M4L4 cages. This homochiral T‐symmetric cage containing a relatively large cavity of 330 Å3 is capable of encapsulating an anionic guest, as was determined by mass spectrometry, 19F NMR spectroscopy, and finally shown from its crystal structure. Moreover, crystallization of the cage from CH3CN led to crystals containing both (ΔΔΔΔ and ΛΛΛΛ) enantiomers, while crystallization from CH3OH resulted in crystals containing only the right‐handed (ΔΔΔΔ) cage. The difference in the crystal packing of the two crystal structures is discussed and a feasible explanation for the unique phenomenon among supramolecular cages—spontaneous resolution—is given.  相似文献   

8.
By tuning the length and rigidity of the spacer of bis(biurea) ligands L, three structural motifs of the A2L3 complexes (A represents anion, here orthophosphate PO43?), namely helicate, mesocate, and mono‐bridged motif, have been assembled by coordination of the ligand to phosphate anion. Crystal structure analysis indicated that in the three complexes, each of the phosphate ions is coordinated by twelve hydrogen bonds from six surrounding urea groups. The anion coordination properties in solution have also been studied. The results further demonstrate the coordination behavior of phosphate ion, which shows strong tendency for coordination saturation and geometrical preference, thus allowing for the assembly of novel anion coordination‐based structures as in transition‐metal complexes.  相似文献   

9.
A series of organotin(IV) compounds R3Sn(A) where R = Me or Ph and A is a chromogenic nitrophenolate ligand were prepared and studied as possible colorimetric sensors for anions (F, Cl, Br, AcO, H2PO4). Equilibrium constants for a complete set of reactions between R3Sn(A) with A = 2‐amino‐4‐nitrophenolate (ANP) or 4‐nitrophenolate and anions (X) involving formation of complexes R3Sn(A)(X) and substitution products R3Sn(X) and R3Sn(X)2 were determined by UV‐vis and 1H NMR titrations in MeCN and DMSO. The binding selectivity was AcO > F > H2PO4 > Cl ≫ Br in both solvents and both for R = Me and Ph with higher affinity for R = Ph. Compounds with A = ANP were found to have the optimum properties as anion sensors allowing optical detection of F, AcO and H2PO4 anions in the 5–100 µM range by appearance of an intense absorption band of free ANP resulting from its substitution with the analyte. Selectivity and affinity of anion interactions with R3Sn(ANP) are similar to those for thiourea receptors, but the organotin receptor produces a much larger naked eye detected optical signal, operates equally well in nonpolar and polar solvents and tolerates the presence of up to 20% vol. of water in DMSO. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Reaction of equimolar amounts of AgClO4 and bis[4-(2-pyridylmethyleneamino)phenyl] methane (L1) or bis[4-(2-pyridylmethyleneamino)phenyl] ether (L2) in a 1:1 solvent mixture of CH3CN and CH2Cl2 leads to the formation of two infinite coordination polymers of the composition {[Ag(L1)]ClO4·CH3CN}n (1) and {[Ag(L2)]ClO4·CH2Cl2}n (2). Whereas 1 represents a homochiral single-stranded helicate the related complex 2 shows a typical zigzag chain arrangement. Both structures are characterized by a distorted tetrahedral coordination environment of the Ag(I) centres each based on a N4 coordination pattern of two ligand molecules. The resulting strands are connected by a hydrogen bonding network including ClO4 ? anions and solvent molecules forming 2-D layers. Additional ?ШC?? and CH?C?? interactions between the aromatic parts of the ligand molecules give a 3-D arrangement of the packing. In contrast, a discrete dinuclear metallocycle, [Ag2(L2)2](ClO4)2·CH3OH (3), has been formed by reaction of AgClO4 with L2 when CH2Cl2 in the solvent mixture was replaced by CH3OH. Again each Ag(I) has a distorted tetrahedral geometry and is coordinated to two pyridylimine units of two ligand molecules. Additional weak hydrogen bonds involving perchlorate and solvent molecules as well as edge-to-face and face-to-face ?ШC?? interactions allow a 3-D packing arrangement.  相似文献   

11.
Reactions of trinickel complex of tripodal tris‐tacn ligand N(CH2m‐C6H4‐CH2tacn)3 ( L , tacn=1,4,7‐triazacyclononane) in acetonitrile–methanol solution with and without phosphate led to two complexes of distinct nuclearities, [(NiIICl)3(CH3OH)3(HPO4) L ](PF6) (Ni3, 1 ) and [(NiII5(CN)4(H2O)8Cl)6 L 8]Cl30 (Ni30, 2 ). Ligand L takes upward and downward conformation in the structure of 1 and 2 , respectively. It is proposed that phosphate directs the upward conformation of Ni3 L to form 1 . In the absence of phosphate, Ni3 L assembles with cyanide ions, which are formed by Ni‐catalyzed C?CN bond cleavage of acetonitrile, to give a nano‐sized Ni30 cage. Complex 2 represents a discrete truncated octahedron cage assembled with [Ni5(CN)4]6+ squares and large and flexible triangular ligands, which is scarcely observed for self‐assembled metal‐organic cages. The magnetic properties of 1 and 2 were examined, showing intriguing magnetic properties.  相似文献   

12.
Anion binding properties of neutral helical foldamers consisting of urea type units in their backbone have been investigated. 1H NMR titration studies in various organic solvents including DMSO suggest that the interaction between aliphatic oligoureas and anions (CH3COO?, H2PO4?, Cl?) is site‐specific, as it largely involves the urea NHs located at the terminal end of the helix (positive pole of the helix), which do not participate to the helical intramolecular hydrogen‐bonding network. This mode of binding parallels that found in proteins in which anion‐binding sites are frequently found at the N‐terminus of an α‐helix. 1H NMR studies suggest that the helix of oligoureas remains largely folded upon anion binding, even in the presence of a large excess of the anion. This study points to potentially useful applications of oligourea helices for the selective recognition of small guest molecules.  相似文献   

13.
A simple epoxy-based oligomer 1 bearing naphthalene unit at the chain-ends is reported to be highly selective ON–OFF type fluorescent probe for fluoride anion. The titled oligomer displayed fluorescence quenching upon addition of F?, resulting in selective detection of fluoride anion over other anions, such as AcO?, Cl?, Br?, I?, HSO4?, NO3? and H2PO4? in CH3CN. Fluorescence experiments suggest the significant influence of the oligomer chain on the sensitivity and selectivity of 1 towards fluoride anion.  相似文献   

14.
The solution properties of a series of transition‐metal–ligand coordination polymers [ML(X)n] [M=AgI, ZnII, HgII and CdII; L=4,4′‐bipyridine (4,4′‐bipy), pyrazine (pyz), 3,4′‐bipyridine (3,4′‐bipy), 4‐(10‐(pyridin‐4‐yl)anthracen‐9‐yl)pyridine (anbp); X=NO3?, CH3COO?, CF3SO3?, Cl?, BF4?; n=1 or 2] in the presence of competing anions, metal cations and ligands have been investigated systematically. Providing that the solubility of the starting complex is sufficiently high, all the components of the coordination polymer, namely the anion, the cation and the ligand, can be exchanged on contact with a solution phase of a competing component. The solubility of coordination polymers is a key factor in the analysis of their reactivity and this solubility depends strongly on the physical properties of the solvent and on its ability to bind metal cations constituting the backbone of the coordination polymer. The degree of reversibility of these solvent‐induced anion‐exchange transformations is determined by the ratio of the solubility product constants for the starting and resultant complexes, which in turn depend upon the choice of solvent and the temperature. The extent of anion exchange is controlled effectively by the ratio of the concentrations of incoming ions to outgoing ions in the liquid phase and the solvation of various constituent components comprising the coordination polymer. These observations can be rationalised in terms of a dynamic equilibrium of ion exchange reactions coupled with Ostwald ripening of crystalline products. The single‐crystal X‐ray structures of [Ag(pyz)ClO4] ( 1 ), {[Ag(4,4′‐bipy)(CF3SO3)] ? CH3CN} ( 2 ), {[Ag(4,4′‐bipy)(CH3CN)]ClO4 ? 0.5 CH3CN} ( 3 ), metal‐free anbp ( 4 ), [Ag(anbp)NO3(H2O)] ( 5 ), {[Cd(4,4′‐bipy)2(H2O)2](NO3)2 ? 4 H2O} ( 6 ) and {[Zn(4,4′‐bipy)SO4(H2O)3] ? 2 H2O} ( 7 ) are reported.  相似文献   

15.
The structure of the title compound, {(C5H5ClN)2[Hg3Cl8]}n, consists of 4‐chloropyridinium cations and one‐dimensional [Hg3Cl8]2− anion chains. There are two coordination environments for HgII in the inorganic chain. The first is a distorted tetrahedral geometry made up of an HgCl2 unit with two Cl anion bridges, while the second is an octahedral coordination geometry consisting of an HgCl2 unit and four chloride‐anion bridges. This gives rise to a novel three‐layer centrosymmetric polymer. Finally, the three‐dimensional network comes about through the many C—H...Cl and N—H...Cl hydrogen bonds that link the organic and inorganic layers.  相似文献   

16.
The transformation mechanisms of thiourea in ethylene glycol solution was systematically investigated in this report, which shows the transformation process is influenced by the anion (NO3?, Cl?, Br?) and polyvinylpyrrolidone (PVP). Thiourea (tu) isomerizes into ammonium thiocyanate when NO3? is present, regardless of the existence of PVP. For Cl?, thiourea coordinates with copper anion to form [Cu(tu)]Cl·1/2H2O complex whether PVP is present. When it comes to Br?, thiourea hydrolyzes in the cooperation of PVP or coordinates with copper anion to form [Cu(tu)Br]·1/2H2O complex without PVP. The different transformation routes will lead to different phase evolution of the Cu? S system. This work may provide a new understanding of the transformation of thiourea in ethylene glycol solution. The optical properties of the as‐prepared copper sulfides exhibit signi?cant stoichiometry‐dependent features which may have potential applications in semiconductor photovoltaic devices.  相似文献   

17.
The reactions of phosphonium‐substituted metallabenzenes and metallapyridinium with bis(diphenylphosphino)methane (DPPM) were investigated. Treatment of [Os{CHC(PPh3)CHC(PPh3)CH}Cl2(PPh3)2]Cl with DPPM produced osmabenzenes [Os{CHC(PPh3)CHC(PPh3)CH}Cl2{(PPh2)CH2(PPh2)}]Cl ( 2 ), [Os{CHC(PPh3)CHC(PPh3)CH}Cl{(PPh2)CH2(PPh2)}2]Cl2 ( 3 ), and cyclic osmium η2‐allene complex [Os{CH?C(PPh3)CH?(η2‐C?CH)}Cl2{(PPh2)CH2(PPh2)}2]Cl ( 4 ). When the analogue complex of osmabenzene 1 , ruthenabenzene [Ru{CHC(PPh3)CHC(PPh3)CH}Cl2(PPh3)2]Cl, was used, the reaction produced ruthenacyclohexadiene [Ru{CH?C(PPh3)CH?C(PPh3)CH}Cl{(PPh2)CH2(PPh2)}2]Cl2 ( 6 ), which could be viewed as a Jackson–Meisenheimer complex. Complex 6 is unstable in solution and can easily be convert to the cyclic ruthenium η2‐allene complexes [Ru{CH?C(PPh3)CH?(η2‐C?CH)}Cl{(PPh2)CH2(PPh2)}2]Cl2 ( 7 ) and [Ru{CH?C(PPh3)CH?(η2‐C?CH)}Cl2{(PPh2)CH2(PPh2)}2]Cl ( 8 ). The key intermediates of the reactions have been isolated and fully characterized, further supporting the proposed mechanism for the reactions. Similar reactions also occurred in phosphonium‐substituted metallapyridinium [OsCl2{NHC(CH3)C(Ph)C(PPh3)CH}(PPh3)2]BF4 to give the cyclic osmium η2‐allene‐imine complex [OsCl2{NH?C(CH3)C(Ph)?(η2‐C?CH)}{(PPh2)CH2(PPh2)}(PPh3)]BF4 ( 11 ).  相似文献   

18.
The structures of monoclinic (C2/m) lithium di­hydrogenphosphate, LiH2PO2, and tetragonal (P41212) beryllium bis(di­hydrogenphosphate), Be(H2PO2)2, have been determined by single‐crystal X‐ray diffraction. The structures consist of layers of hypophosphite anions and metal cations in tetrahedral coordination by O atoms. Within the layers, the anions bridge four Li+ and two Be2+ cations, respectively. In LiH2PO2, the Li atom lies on a twofold axis and the H2PO2 anion has the PO2 atoms on a mirror plane. In Be(H2PO2)2, the Be atom lies on a twofold axis and the H2PO2 anion is in a general position.  相似文献   

19.
The title compound, (C4H12N)4[Ta6Cl18]Cl, crystallizes in the cubic space group . The crystal structure contains two different types of coordination polyhedra, i.e. four tetrahedral [(CH3)4N]+ cations and one octahedral [(Ta6Cl12)Cl6]3− cluster anion, and one Cl ion. The presence of three different kinds of Cl atoms [bridging (μ2), terminal and counter‐anion] in one mol­ecule makes this substance unique in the chemistry of hexanuclear halide clusters of niobium and tantalum. The Ta6 octahedron has an ideal Oh symmetry, with a Ta—Ta interatomic distance of 2.9215 (7) Å.  相似文献   

20.
A series of tetrahalogenoferrates(III), [FeBr4?nCln]? (n=0‐4) stabilized with the tetrabutylammonium cation, of general formula [(C4H9)4N][FeBr4?nCln], has been synthesized. The crystal and molecular structure of [(C4H9)4N][FeCl4] was determined. The iron cation adopts slightly distorted tetrahedral coordination with two opposite angles smaller than tetrahedral one, two equal to tetrahedral and two larger than tetrahedral. The bond valences were computed. The total valence of iron atom is equal to 3.08. In the structure can be found only one hydrogen bond C(1)–H···Cl. Except mentioned there are no unusually intermolecular short contacts between ions existing in the structure. All [(C4H9)4N][FeBr4?nCln] (n=0‐4) compounds are isostructural in solid state. On the basis of conductometric measurements, relative stabilities of the anions have been estimated in methanol (MeOH), dimethyl sulfoxide (DMSO), acetone (AC), acetonitrile (AN) and dichloromethane (CH2Cl2) representing both polar (including amphiprotic and aprotic) as well as non‐polar solvents. Further, the dissociation constants of the compounds were calculated from the expanded Pitt's conductivity equation. The results of the conductometric measurements were supported by electronic spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号