首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The EuII ion rivals GdIII in its ability to enhance contrast in magnetic resonance imaging. However, all reported EuII‐based complexes have been studied in vitro largely because the tendency of EuII to oxidize to EuIII has been viewed as a major obstacle to in vivo imaging. Herein, we present solid‐ and solution‐phase characterization of a EuII‐containing cryptate and the first in vivo use of EuII to provide contrast enhancement. The results indicate that between one and two water molecules are coordinated to the EuII core upon dissolution. We also demonstrate that EuII‐based contrast enhancement can be observed for hours in a mouse.  相似文献   

2.
Our lab has developed a new series of self‐immolative MR agents for the rapid detection of enzyme activity in mouse models expressing β‐galactosidase (β‐gal). We investigated two molecular architectures to create agents that detect β‐gal activity by modulating the coordination of water to GdIII. The first is an intermolecular approach, wherein we designed several structural isomers to maximize coordination of endogenous carbonate ions. The second involves an intramolecular mechanism for q modulation. We incorporated a pendant coordinating carboxylate ligand with a 2, 4, 6, or 8 carbon linker to saturate ligand coordination to the GdIII ion. This renders the agent ineffective. We show that one agent in particular (6‐C pendant carboxylate) is an extremely effective MR reporter for the detection of enzyme activity in a mouse model expressing β‐gal.  相似文献   

3.
Novel contrast agents were developed through assembling of GdIII‐containing metallosurfactant (MS) with biocompatible polyelectrolytes sodium hyaluronate (HA), heparinsodium (HS) and dextran sulfate sodium (DSS). The formed polyelectrolyte–surfactant complexes showed different structural patterns as the charge ratio increased, including spherical aggregates, rod‐like aggregates and network patterns in monovalent HA system, while spherical structures emerged in multivalent HS and DSS systems. Energy dispersive spectroscopy analysis and scanning electron microscopy mapping showed the presence of GdIII in these complexes. Inductively coupled plasma atomic emission spectrometry was further used to quantify the contents of GdIII in the assemblies. T1 magnetic resonance imaging showed that these GdIII‐loaded complexes exhibited relaxivity of up to 63.81 mM ?1 s?1, much higher than that of Ominiscan (4.64 mM ?1 s?1). The cytotoxicity test in vitro demonstrated the excellent biocompatibility of these complexes, which is essential for clinical application.  相似文献   

4.
Lanthanide complexes of two tris(amide) derivatives of PCTA were synthesized and characterized. The relaxometric and luminescence properties of their lanthanide complexes were investigated as bimodal magnetic resonance (MR) and optical imaging agents. Luminescence studies show that one of the TbIII complexes dimerizes in solution at low millimolar concentrations, whereas the other may have a higher than expected coordination number in solution. The corresponding GdIII complexes display unusually high T1 relaxivities and enhanced kinetic inertness compared to GdPCTA. These features suggest that these new chelates may be suitable for in vivo applications. The fast water‐exchange rates observed for these complexes make them unsuitable as paramagnetic chemical exchange saturation transfer (PARACEST) agents.  相似文献   

5.
Early studies suggested that FeIII complexes cannot compete with GdIII complexes as T1 MRI contrast agents. Now it is shown that one member of a class of high‐spin macrocyclic FeIII complexes produces more intense contrast in mice kidneys and liver at 30 minutes post‐injection than does a commercially used GdIII agent and also produces similar T1 relaxivity in serum phantoms at 4.7 T and 37 °C. Comparison of four different FeIII macrocyclic complexes elucidates the factors that contribute to relaxivity in vivo including solution speciation. Variable‐temperature 17O NMR studies suggest that none of the complexes has a single, integral inner‐sphere water that exchanges rapidly on the NMR timescale. MRI studies in mice show large in vivo differences of three of the FeIII complexes that correspond, in part, to their r1 relaxivity in phantoms. Changes in overall charge of the complex modulate contrast enhancement, especially of the kidneys.  相似文献   

6.
The 17O NMR spectrum of the non‐coordinated carboxyl oxygen in the GdIII–DOTA (DOTA=tetraazacyclododecanetetraacetic acid) complex has been observed experimentally. Its line width is essentially unaffected by paramagnetic relaxation due to gadolinium, and is only affected by the quadrupole pathway. The results are supported by the relevant parameters (hyperfine and quadrupole coupling constants) calculated by relativistic DFT methods. This finding opens up new avenues for investigating the structure and reactivity of paramagnetic GdIII complexes used as contrast agents in magnetic resonance imaging.  相似文献   

7.
Here, a new amphiphilic magnetic resonance imaging (MRI) contrast agent, a GdIII‐chelated diethylenetriaminepentaacetic acid conjugated to two branched alkyl chains via a dopamine spacer, Gd‐DTPA‐dopamine‐bisphytanyl (Gd‐DTPA‐Dop‐Phy), which is readily capable of self‐assembling into liposomal nanoassemblies upon dispersion in an aqueous solution, is reported. In vitro relaxivities of the dispersions were found to be much higher than Magnevist, a commercially available contrast agent, at 0.47 T but comparable at 9.40 T. Analysis of variable temperature 17O NMR transverse relaxation measurements revealed the water exchange of the nanoassemblies to be faster than that previously reported for paramagnetic liposomes. Molecular reorientation dynamics were probed by 1H NMRD profiles using a classical inner and outer sphere relaxation model and a Lipari–Szabo “model‐free” approach. High payloads of GdIII ions in the liposomal nanoassemblies made solely from the Gd‐DTPA‐Dop‐Phy amphiphiles, in combination with slow molecular reorientation and fast water exchange makes this novel amphiphile a suitable candidate to be investigated as an advanced MRI contrast agent.  相似文献   

8.
It is known that phenylboronic acid (PBA) can target tumor tissues by binding to sialic acid, a substrate overexpressed by cancer cells. This capability has previously been explored in the design of targeting diagnostic probes such as Gd- and 68Ga-DOTA-EN-PBA, two contrast agents for magnetic resonance imaging (MRI) and positron emission tomography (PET), respectively, whose potential has already been demonstrated through in vivo experiments. In addition to its high resolution, the intrinsic low sensitivity of MRI stimulates the search for more effective contrast agents, which, in the case of small-molecular probes, basically narrows down to either increased tumbling time of the entire molecule or elevated local concentration of the paramagnetic ions, both strategies resulting in enhanced relaxivity, and consequently, a higher MRI contrast. The latter strategy can be achieved by the design of multimeric GdIII complexes. Based on the monomeric PBA-containing probes described recently, herein, we report the synthesis and characterization of the dimeric analogues (GdIII-DOTA-EN)2-PBA and (GdIII-DOTA-EN)2F2PBA. The presence of two Gd ions in one molecule clearly contributes to the improved biological performance, as demonstrated by the relaxometric study and cell-binding investigations.  相似文献   

9.
N‐Substituted aminoethyl groups were attached to 1,4,7,10‐tetraazacyclododecane‐1,4,7‐triacetic acid (DO3A) with the aim to design pH‐responsive LnIII complexes based on the pH‐dependent on/off ligation of the amine nitrogen to the metal ion. The following ligands were synthesized: AE ‐ DO3A (aminoethyl‐DO3A), MAE ‐ DO3A (N‐methylaminoethyl‐DO3A), DMAE ‐ DO3A (N,N‐dimethylaminoethyl‐DO3A) and MEM ‐ AE ‐ DO3A (N‐methoxyethyl‐N‐methylaminoethyl‐DO3A). The physicochemical properties of the LnIII complexes were investigated for the evaluation of their potential applicability as magnetic resonance imaging (MRI) contrast agents. In particular, a 1H and 17O NMR relaxometric study was carried out for these GdIII complexes at two different pH values: at basic pH (pendant amino group coordinated to the metal centre) and at acidic pH (protonated amine, not interacting with the metal ion). EuIII complexes allow one to estimate the number of inner‐sphere water molecules through luminescence lifetime measurements and obtain some structural information through variable‐temperature (VT) high‐resolution 1H NMR studies. Equilibria between differently hydrated species were found for most of the complexes at both acidic and basic pH. The thermodynamic stability of CaII, ZnII, CuII and LnIII complexes and kinetics of formation and dissociation reactions of LnIII complexes of AE ‐ DO3A and DMAE ‐ DO3A were investigated showing stabilities comparable to currently approved GdIII‐based CAs. In detail, higher total basicity (Σlog KiH) and higher stability constants of LnIII complexes were found for AE ‐ DO3A with respect to DMAE ‐ DO3A (i.e., log KGd‐ AE‐DO3A =22.40 and log KGd‐ DMAE‐DO3A =20.56). The transmetallation reactions of GdIII complexes are very slow (Gd‐ AE ‐ DO3A : t1/2=2.7×104 h; Gd‐ DMAE ‐ DO3A : 1.1×105 h at pH 7.4 and 298 K) and occur through proton‐assisted dissociation.  相似文献   

10.
《化学:亚洲杂志》2018,13(19):2834-2837
Magnetic cooling at low temperature has attracted intensive interest in cryogenics research, which may become important as cooling medium for long‐wave photon detectors to support space exploration. Here, we report a Gd‐based quaternary magnetic refrigerant material, Gd5BSi2O13, containing chains of face‐shared GdO9 polyhedra and geometrically frustrated OGd3 triangles. Magnetic measurements indicate that Gd5BSi2O13 exhibits a large magnetocaloric effect (MCE) about 1.74 times that of the practical magnetic refrigerant GGG (−ΔSm=67.0 J kg−1 K−1). We analyzed the origin of the large MCE by comparing GdIII‐containing compounds with different structures and concentrations of GdIII.  相似文献   

11.
Gd3+‐aggregated gold nanoclusters (AuNCs) encapsulated by silica shell (Gd3+‐A‐AuNCs@SiO2 NPs) were strategically designed and prepared. The as‐prepared nanoparticles exhibit aggregation‐enhanced fluorescence (AEF), with an intensity that is up to 3.8 times that of discrete AuNCs. The clusters served as novel nanoprobes for in vitro and in vivo multimodal (fluorescence, magnetic resonance, and computed X‐ray tomography) cancer imaging  相似文献   

12.
An approach for hyperpolarized 129Xe molecular sensors is explored using paramagnetic relaxation agents that can be deactivated upon chemical or enzymatic reaction with an analyte. Cryptophane encapsulated 129Xe within the vicinity of the paramagnetic center experiences fast relaxation that, through chemical exchange of xenon atoms between cage and solvent pool, causes accelerated hyperpolarized 129Xe signal decay in the dissolved phase. In this proof‐of‐concept work, the relaxivity of Gadolinium III‐DOTA on 129Xe in the solvent was increased eightfold through tethering of the paramagnetic molecule to a cryptophane cage. This potent relaxation agent can be ′turned off′ specifically for 129Xe through chemical reactions that spatially separate the GdIII centre from the attached cryptophane cage. Unlike 129Xe chemical shift based sensors, the new concept does not require high spectral resolution and may lead to a new generation of responsive contrast agents for molecular MRI.  相似文献   

13.
Functionalised MCM‐41 mesoporous silica nanoparticles were used as carriers of GdIII complexes for the development of nanosized magnetic resonance imaging contrast agents. Three GdIII complexes based on the 1,4,7,10‐tetraazacyclododecane scaffold (DOTA; monoamide‐, DOTA‐ and DO3A‐like complexes) with distinct structural and magnetic properties were anchored on the silica nanoparticles functionalised with NH2 groups. The interaction between GdIII chelates and surface functional groups markedly influenced the relaxometric properties of the hybrid materials, and were deeply modified passing from ionic ? NH3+ to neutral amides. A complete study of the structural, textural and surface properties together with a full 1H relaxometric characterisation of these hybrid materials before and after surface modification was carried out. Particularly for the anionic complex 2 attached to MCM‐41, an impressive increase in relaxivity (r1p) was observed (from 20.3 to 37.8 mM ?1 s?1, 86.2 % enhancement at 20 MHz and 310 K), mainly due to a threefold faster water exchange rate after acetylation of the surface ? NH3+ ions. This high r1p value, coupled with the large molar amount of grafted 2 onto the silica nanoparticles gives rise to a value of relaxivity per particle of 29 500 mM ?1 s?1, which possibly allows it to be used in molecular imaging procedures. Smaller changes were observed for the hybrid materials based on neutral 1 and 3 complexes. In fact, whereas 1 shows a weak interaction with the surface and acetylation induced only some decrease of the local rotation, complex 3 appears to be involved in a strong interaction with surface silanols. This results in the displacement of a coordinated water molecule and in a decrease of the accessibility of the solvent to the metal centre, which is unaffected by the modification of ammonium ions to neutral amides.  相似文献   

14.
Compared to 2PE (two‐photon excitation) microscopy, 3PE microscopy has superior spatial resolution, deeper tissue penetration, and less defocused interference. The design of suitable agents with a large Stokes shift, good three‐photon absorption (3PA), subcellular targeting, and fluorescence lifetime imaging (FLIM) properties, is challenging. Now, two IrIII complexes (3PAIr1 and 3PAIr2) were developed as efficient three‐photon phosphorescence (3PP) agents. Calculations reveal that the introduction of a new group to the molecular scaffold confers a quadruple promotion in three‐photon transition probability. Confocal and lifetime imaging of mitochondria using IrIII complexes as 3PP agents is shown. The complexes exhibit low working concentration (50 nm ), fast uptake (5 min), and low threshold for three‐photon excitation power (0.5 mW at 980 nm). The impressive tissue penetration depth (ca. 450 μm) allowed the 3D imaging and reconstruction of brain vasculature from a living specimen.  相似文献   

15.
To design efficient targeting strategies in magnetic resonance (MR) molecular imaging applications, the formation of supramolecular adducts between (strept)avidin ((S)Av) and tribiotinylated Gd‐DOTA‐monoamide complexes (DOTA=1,4,7,10‐tetraazacyclododecane‐N,N′,N′′,N′′′‐tetraacetic acid) was explored. Two compounds based on the trivalent core of tris(2‐aminoethyl)amine each containing three biotin molecules and one ( L1 ) or three ( L2 ) DOTA‐monoamide (DOTAMA) ligands were synthesized. In these tribiotinylated derivatives the biotins are spaced far enough apart to allow the formation of the supramolecular adduct with the protein and to host the chelating units in between the (S)Av layers. Size exclusion HPLC analyses indicated complete formation of very high molecular weight polymers (>2 MDa) with (S)Av in solution. A 1H NMR spectroscopy relaxometric study on the obtained polymeric adducts showed a marked increase of the relaxivity at 35–40 MHz as a consequence of the lengthening of the tumbling time due to the formation of Gd‐chelates/(S)Av polymers. The most efficient Gd3 L2 /(S)Av polymeric system was used for a test in cell cultures. The target is represented by a neural cell adhesion molecule (NCAM), which is overexpressed in Kaposi’s sarcoma cells and tumor endothelial cells (TEC) and that is efficiently recognized by a biotinylated tetrameric peptide (C3d‐Bio). In vitro experiments showed that only cells incubated with both C3d‐Bio and Gd3 L2 /SAv polymer were hyperintense with respect to the control. Relaxation rates of cell pellets incubated with Gd3 L2 /SAv alone were not significantly different from the untreated cells demonstrating the absence of a specific binding.  相似文献   

16.
Responsive or smart magnetic resonance imaging (MRI) contrast agents are molecular sensors that alter the MRI signal upon changes in a particular parameter in their microenvironment. Consequently, they could be exploited for visualization of various biochemical events that take place at molecular and cellular levels. In this study, a set of dual‐frequency calcium‐responsive MRI agents are reported. These are paramagnetic, fluorine‐containing complexes that produce remarkably high MRI signal changes at the 1H and 19F frequencies at varying Ca2+ concentrations. The nature of the processes triggered by Ca2+ was revealed, allowing a better understanding of these complex systems and their further improvement. The findings indicate that these double‐frequency tracers hold great promise for development of novel functional MRI methods.  相似文献   

17.
Prostate-specific membrane antigen (PSMA) is a well-established biological target that is overexpressed on the surface of prostate cancer lesions. Radionuclide-labeled small-molecule PSMA inhibitors have been shown to be promising PSMA-specific agents for the diagnosis and therapy of prostate cancer. In this study, a glutamate-urea-based PSMA-targeted ligand containing an isonitrile (CNGU) was synthesized and labeled with 99mTc to prepare [99mTc]Tc-CNGU with a high radiochemical purity (RCP). The CNGU ligand showed a high affinity toward PSMA (Ki value is 8.79 nM) in LNCaP cells. The [99mTc]Tc-CNGU exhibited a good stability in vitro and hydrophilicity (log P = −1.97 ± 0.03). In biodistribution studies, BALB/c nude mice bearing LNCaP xenografts showed that the complex had a high tumor uptake with 4.86 ± 1.19% ID/g, which decreased to 1.74 ± 0.90% ID/g after a pre-injection of the selective PSMA inhibitor ZJ-43, suggesting that it was a PSMA-specific agent. Micro-SPECT imaging demonstrated that the [99mTc]Tc-CNGU had a tumor uptake and that the uptake was reduced in the image after blocking with ZJ-43, further confirming its PSMA specificity. All of the results in this work indicated that [99mTc]Tc-CNGU is a promising PSMA-specific tracer for the imaging of prostate cancer.  相似文献   

18.
Paramagnetic relaxation enhancement is often explored in magnetic resonance imaging in terms of contrast agents and in biomolecular nuclear magnetic resonance (NMR) spectroscopy for structure determination. New ultrahigh‐spin clusters are investigated with respect to their NMR relaxation properties. As their molecular size and therefore motional correlation times as well as their electronic properties differ significantly from those of conventional contrast agents, questions about a comprehensive characterization arise. The relaxivity was studied by field‐dependent longitudinal and transverse NMR relaxometry of aqueous solutions containing FeIII10DyIII10 ultrahigh‐spin clusters (spin ground state 100/2). The high‐field limit was extended to 32.9 T by using a 24 MW resistive magnet and an ultrahigh‐frequency NMR setup. Interesting relaxation dispersions were observed; the relaxivities increase up to the highest available fields, which indicates a complex interplay of electronic and molecular correlation times.  相似文献   

19.
We report herein the synthesis of a luminescent polynuclear dendritic structure (SmIII‐G3P‐2,3Nap) in which eight SmIII ions are sensitized by thirty‐two 2,3‐naphthalimide chromophores. Upon a single excitation wavelength, the dendrimer complex exhibits two types of emission in the visible and in the near‐infrared (NIR) ranges. SmIII‐G3P‐2,3Nap was non‐cytotoxic after 24 h of incubation and up to 2.5 μM . The ability of the SmIII‐based probe to be taken up by cells was confirmed by confocal microscopy. Epifluorescence microscopy validated SmIII‐G3P‐2,3Nap as a versatile probe, capable of performing interchangeably in the visible or NIR for live‐cell imaging. As both emissions are obtained from a single complex, the cytotoxicity and biodistribution are inherently the same. The possibility for discriminating the sharp SmIII signals from autofluorescence in two spectral ranges increases the reliability of analysis and reduces the probability of artifacts and instrumental errors.  相似文献   

20.
A GdIII‐based porous metal–organic framework (MOF), Gd‐pDBI, has been synthesized using fluorescent linker pDBI (pDBI=(1,4‐bis(5‐carboxy‐1H‐benzimidazole‐2‐yl)benzene)), resulting in a three‐dimensional interpenetrated structure with a one‐dimensional open channel (1.9×1.2 nm) filled with hydrogen‐bonded water assemblies. Gd‐pDBI exhibits high thermal stability, porosity, excellent water stability, along with organic‐solvent and mild acid and base stability with retention of crystallinity. Gd‐pDBI was transformed to the nanoscale regime (ca. 140 nm) by mechanical grinding to yield MG‐Gd‐pDBI with excellent water dispersibility (>90 min), maintaining its porosity and crystallinity. In vitro and in vivo studies on MG‐Gd‐pDBI revealed its low blood toxicity and highest drug loading (12 wt %) of anticancer drug doxorubicin in MOFs reported to date with pH‐responsive cancer‐cell‐specific drug release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号