首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《化学:亚洲杂志》2017,12(21):2863-2872
A new strategy involving the computer‐assisted design of substituted imidazolate‐based ionic liquids (ILs) through tuning the absorption enthalpy as well as the basicity of the ILs to improve SO2 capture, CO2 capture, and SO2/CO2 selectivity was explored. The best substituted imidazolate‐based ILs as absorbents for different applications were first predicted. During absorption, high SO2 capacities up to ≈5.3 and 2.4 mol molIL−1 could be achieved by ILs with the methylimidazolate anions under 1.0 and 0.1 bar (1 bar=0.1 MPa), respectively, through tuning multiple N ⋅⋅⋅ S interactions between SO2 and the N atoms in the imidazolate anion with different substituents. In addition, CO2 capture by the imidazolate‐based ILs could also be easily tuned through changing the substituents of the ILs, and 4‐bromoimidazolate IL showed a high CO2 capacity but a low absorption enthalpy. Furthermore, a high selectivity for SO2/CO2 could be reached by IL with 4,5‐dicyanoimidazolate anion owing to its high SO2 capacity but low CO2 capacity. The results put forward in this work are in good agreement with the predictions. Quantum‐chemical calculations and FTIR and NMR spectroscopy analysis methods were used to discuss the SO2 and CO2 absorption mechanisms.  相似文献   

2.
CO 2 is locked up : Dual amino‐functionalised phosphonium ionic liquids (ILs; see figure) have been prepared. The ILs have excellent thermal properties, such as low glass transition temperatures and high thermal decomposition temperatures. The supported CO2 absorption of four of the ILs on porous SiO2 was found to approach one mol CO2 per mol IL, a factor of two greater than that reported before.

  相似文献   


3.
基于离子液体固定二氧化碳的研究进展   总被引:2,自引:0,他引:2  
范薇  孙晓霞  苏岩 《化学研究》2009,20(3):101-107
综述了不同种类离子液体吸收固定CO2的研究进展,从离子液体的结构和分子模拟结果探讨了离子液体吸收CO2的机理及特征,展望了功能化离子液体在固定CO2方面的应用前景并分析了其在工业应用中存在的问题.  相似文献   

4.
A strategy for improving CO2 capture by new anion‐functionalized ionic liquids (ILs) making use of multiple site cooperative interactions is reported. An extremely high capacity of up to 1.60 mol CO2 per mol IL and excellent reversibility were achieved by introducing a nitrogen‐based interacting site on the phenolate and imidazolate anion. Quantum‐chemical calculations, spectroscopic investigations, and calorimetric data demonstrated that multiple‐site cooperative interactions between two kinds of interacting sites in the anion and CO2 resulted in superior CO2 capacities, which originated from the π‐electron delocalization in the pyridine ring.  相似文献   

5.
Protic ionic liquids (PILs), such as 1,8‐diazabicyclo[5.4.0]‐7‐undecenium 2‐methylimidazolide [DBUH][MIm], can catalyze the reaction of atmospheric CO2 with a broad range of propargylic amines to form the corresponding 2‐oxazolidinones. The products are formed in high yields under mild, metal‐free conditions. The cheaper and greener PILs can be easily recycled and reused at least five times without a decrease in the catalytic activity and selectivity. A reaction mechanism was proposed on the basis of a detailed DFT study which indicates that both the cation and anion of the PIL play key synergistic roles in accelerating the reaction.  相似文献   

6.
7.
This work aims to explore the gas permeation performance of two newly-designed ionic liquids, [C2mim][CF3BF3] and [C2mim][CF3SO2C(CN)2], in supported ionic liquid membranes (SILM) configuration, as another effort to provide an overall insight on the gas permeation performance of functionalized-ionic liquids with the [C2mim]+ cation. [C2mim][CF3BF3] and [C2mim][CF3SO2C(CN)2] single gas separation performance towards CO2, N2, and CH4 at T = 293 K and T = 308 K were measured using the time-lag method. Assessing the CO2 permeation results, [C2mim][CF3BF3] showed an undermined value of 710 Barrer at 293.15 K and 1 bar of feed pressure when compared to [C2mim][BF4], whereas for the [C2mim][CF3SO2C(CN)2] IL an unexpected CO2 permeability of 1095 Barrer was attained at the same experimental conditions, overcoming the results for the remaining ILs used for comparison. The prepared membranes exhibited diverse permselectivities, varying from 16.9 to 22.2 for CO2/CH4 and 37.0 to 44.4 for CO2/N2 gas pairs. The thermophysical properties of the [C2mim][CF3BF3] and [C2mim][CF3SO2C(CN)2] ILs were also determined in the range of T = 293.15 K up to T = 353.15 K at atmospheric pressure and compared with those for other ILs with the same cation and anion’s with similar chemical moieties.  相似文献   

8.
In recent years, ionic liquids have attracted the attention of many chemists as a result of their unique properties as solvents for chemical transformations. The focus of this Minireview is on applications of so‐called “task‐specific” ionic liquids, whereby the role of the ionic liquid goes beyond that of a solvent. Such ionic liquids find application in a wide range of areas, including catalysis, synthesis, gas absorption, and analysis.  相似文献   

9.
We propose a series of azolium poly(azolyl)borate ionic liquids (ILs) for reversible SO2 capture. Density functional calculations demonstrate that the designed borate anions can strongly bond to SO2 at multiple sites with nearly uniform binding energies. Thus, as well as high overall uptakes, the ILs can achieve much higher effective uptakes (the uptake difference between absorption and desorption conditions) than existing SO2‐capture reagents. The larger size of the borate anions, the evenly distributed negative charge among the azolyl rings, and the blocking of the conjugation by the tetrahedral boron concertedly reduce absorbate–absorbate repulsion, which leads to a large disparity among binding sites in other multiple‐site SO2 sorbents.  相似文献   

10.
A new approach has been developed to improve SO2 sorption by cyano‐containing ionic liquids (ILs) through tuning the basicity of ILs and cyano–sulfur interaction. Several kinds of cyano‐containing ILs with different basicity were designed, prepared, and used for SO2 capture. The interaction between these cyano‐containing ILs and SO2 was investigated by FTIR and NMR methods. Spectroscopic investigations and quantum chemical calculations showed that dramatic effects on SO2 capacity originate from the basicity of the ILs and enhanced cyano–sulfur interaction. Furthermore, the captured SO2 was easy to release by heating or bubbling N2 through the ILs. This efficient and reversible process, achieved by tuning the basicity of ILs, is an excellent alternative to current technologies for SO2 capture.  相似文献   

11.
In propellant systems, the most common bipropellants are composed of two chemicals, a fuel (or reducer) and an oxidizer. Currently, the choices for propellant fuels rely mainly on hydrazine and its methylated derivatives, even though they are extremely toxic, highly volatile, sensitive to adiabatic compression (risk of detonation), and, therefore, difficult to handle. With this background, the search for alternative green propellant fuels has been an urgent goal of space science. In this study, a new family of cyanoborohydride‐based ionic liquids (ILs) with properties and performances comparable to hydrazine derivatives were designed and synthesized. These new ILs as bipropellant fuels, have some unique advantages including negligible vapor pressure, ultra‐short ignition delay (ID) time, and reduced synthetic and storage costs, thereby showing great application potential as environmentally friendly fuels in bipropellant formulations.  相似文献   

12.
A novel method for highly efficient nitric oxide absorption by azole‐based ionic liquid was reported. The NO absorption capacity reached up to 4.52 mol per mol ionic liquid and is significant higher than the capacity other traditional absorbents. Moreover, the absorption of NO by this ionic liquid was reversible. Through a combination of experimental absorption, quantum chemical calculation, NMR and FT‐IR spectroscopic investigation, the results indicated that such high capacity originated from multiple‐site interactions between NO and the anion through the formation of NONOate with the chemical formula R1R2N?(NO?)?N=O, where R1 and R2 are alkyl groups. We believe that this highly efficient and reversible NO absorption by an azole‐based ionic liquid paves a new way for gas capture and utilization.  相似文献   

13.
A series of imidazolium‐based ionic liquid monomers and their corresponding polymers (poly(ionic liquid)s) were synthesized, and their CO2 sorption was studied. The poly(ionic liquid)s had enhanced CO2 sorption capacities and fast sorption/desorption rates compared with room temperature ionic liquids. The effects of the chemical structures, including the types of anion, cation, and backbone of the poly(ionic liquid)s on their CO2 sorption have been discussed. In contrast to room temperature ionic liquids, the polymer with PF anions had the highest CO2‐sorption capacity, while those with BF or Tf2N? anions had the same capacities. The CO2 sorption and desorption of the polymers were fast and reversible, and the sorption was selective over H2, N2, and O2. The measured Henry's constants of P[VBBI][BF4] and P[MABI][BF4] were 26.0 bar and 37.7 bar, which were lower than those of similar room temperature ionic liquids. The preliminary study of the mechanism indicated that the CO2 sorption of the polymer particles was more absorption (the bulk) but less adsorption (the surface). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5477–5489, 2005  相似文献   

14.
Nitrocyanamide ionic liquids with substituted imidazolium, guanidinium, and tetrazolium cations have been synthesized and fully characterized. Aminoguanidinium nitrocyanamide ( 7 ) crystallizes in the triclinic system P$\bar 1$ . The results obtained from theoretical calculations based on 7 are consistent with the single‐crystal structure data. These ionic liquids exhibit desirable physicochemical properties, such as low melting points and good thermal stabilities. Furthermore, they are all impact insensitive materials. Their energetic performances, including heats of formation, detonation pressures, and detonation velocities, were studied by a combination of theoretical and empirical calculations. The ionic liquids 1 – 4 have large liquid ranges and low viscosities. They were shown to be promising candidates as hypergolic ionic liquids through the combustion tests with 100 % HNO3.  相似文献   

15.
超临界CO2/离子液体体系   总被引:2,自引:0,他引:2  
超临界CO2和离子液体是两种具有优异性能的绿色化学试剂,本文介绍了将两者结合反应,分离体系的物化性质和多种绿色化学过程。利用超临界CO2可以广泛地萃取离子液体中的不挥发性化合物而不导致离子液体及其中催化剂的流失,在加氢、醛化、甲酰化等反应,分离过程中的应用表明,过程具有很好的反应分离特性和环境友好性,应用前景广阔。  相似文献   

16.
The synthesis and characterization of several compounds representing a new class of multitask‐specific phosphonium ionic liquids that contain a maleimide functionality is reported. The maleimide moiety of the ionic liquid (IL) is shown to undergo Michael‐type additions with substrates containing either a thiol or amine moiety, thus, serving as a template to introduce wide structural diversity into the IL. Multitask‐specific ILs are accessible by reaction of the maleimide with Michael donors that are capable of serving some function. As a model example to illustrate this concept, a redox active ferrocenyl thiol was incorporated and examined by cyclic voltammetry. Because the maleimide moiety is highly reactive to additions, the task‐specific ionic liquids (TSILs) are prepared as the furan‐protected Diels–Alder maleimide. The maleimide moiety can then be liberated when required by simple heating.  相似文献   

17.
The efficient and selective catalytic reduction of CO2 is a highly promising process for both of the storage of renewable energy as well as the production of valuable chemical feedstocks. In this work, we show that the addition of an ionic liquid, 1‐butyl‐3‐methylimidazolium tetrafluoroborate, in an aprotic electrolyte containing a proton source and FeTPP, promotes the in situ formation of the [Fe0TPP]2? homogeneous catalyst at a less negative potential, resulting in lower overpotentials for the CO2 reduction (670 mV) and increased kinetics of electron transfer. This co‐catalysis exhibits high Faradaic efficiency for CO production (93 %) and turnover number (2 740 000 after 4 hour electrolysis), with a four‐fold increase in turnover frequency (TOF) when compared with the standard system without the ionic liquid.  相似文献   

18.
19.
The effect of microwave (MW) irradiation and ionic liquids (IL) on the cycloaddition of azomethine ylides to [60]fullerene has been investigated by screening the reaction protocol with regard to the IL medium composition, the applied MW power, and the simultaneous cooling of the system. [60]Fullerene conversion up to 98 % is achieved in 2–10 min, by using a 1:3 mixture of the IL 1‐methyl‐3‐n‐octyl imidazolium tetrafluoroborate ([omim]BF4) and o‐dichlorobenzene, and an applied power as low as 12 W. The mono‐ versus poly‐addition selectivity to [60]fullerene can be tuned as a function of fullerene concentration. The reaction scope includes aliphatic, aromatic, and fluorous‐tagged (FT) derivatives. MW irradiation of IL‐structured bucky gels is instrumental for the functionalization of single‐walled carbon nanotubes (SWNTs), yielding group coverages of up to one functional group per 60 carbon atoms of the SWNT network. An improved performance is obtained in low viscosity bucky gels, in the order [bmim]BF4> [omim]BF4> [hvim]TF2N (bmim=1‐methyl‐3‐n‐butyl imidazolium; hvim=1‐vinyl‐3‐n‐hexadecyl imidazolium). With this protocol, the introduction of fluorous‐tagged pyrrolidine moieties onto the SWNT surface (1/108 functional coverage) yields novel FT‐CNS (carbon nanostructures) with high affinity for fluorinated phases.  相似文献   

20.
Modeling of the temperature‐dependent liquid entropy of ionic liquids (ILs) with great accuracy using COSMO‐RS is demonstrated. The minimum structures of eight IL ion pairs are investigated and the entropy, calculated from ion pairs, is found to differ on average only 2 % from the available experimental values (119 data points). For calculations with single ions, the average error amounts to 2.6 % and stronger‐coordinating ions tend to give higher deviations. Additionally, the first parameterization of the standard liquid entropy for ILs is presented in the context of traditional volume‐based thermodynamics (Sl0=1.585 kJ mol?1 K?1 nm?3?rm3+14.09 J mol?1 K?1), which sheds light on the statistical treatment of ionic interactions. The findings provide the first direct access to accurate predictions of liquid entropies of ILs, which are tedious and time‐consuming to measure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号