首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two‐step assembly of a peptide from HPV16 L1 with a highly charged europium‐substituted polyoxometalate (POM) cluster, accompanying a great luminescence enhancement of the inorganic polyanions, is reported. The mechanism is discussed in detail by analyzing the thermodynamic parameters from isothermal titration calorimetry (ITC), time‐resolved fluorescent and NMR spectra. By comparing the actions of the peptide analogues, a binding process and model are proposed accordingly. The driving forces in each binding step are clarified, and the initial POM aggregation, basic‐sequence and hydrophobic C termini of peptide are revealed to contribute essentially to the two‐step assembly. The present study demonstrates both a meaningful preparation for bioinorganic materials and a strategy using POMs to modulate the assembly of peptides and even proteins, which could be extended to other proteins and/or viruses by using peptides and POMs with similar properties.  相似文献   

2.
Amphiphilic organo‐polyoxometalates (POMs) used in the radical emulsion polymerization of styrene allowed the preparation in aqueous medium of stable 50–100 nm polystyrene–POM composite latexes. Thanks to the presence of a trithiocarbonate group in the POM amphiphile, POMs could be covalently linked to the polymer particle surface. The chemical and catalytic integrity of the POMs was confirmed, and the POM‐mediated surface photoactivity of the latexes was demonstrated by the spatially controlled nucleation of silver nanoparticles at the periphery of the composites.  相似文献   

3.
The latest advances in the area of polyoxometalate (POM)‐based inorganic/organic hybrid materials prepared by self‐assembly, covalent modification, and supramolecular interactions are presented. This Review is composed of five sections and documents the effect of organic cations on the formation of novel POMs, surfactant encapsulated POM‐based hybrids, polymeric POM/organic hybrid materials, POMs‐containing ionic crystals, and covalently functionalized POMs. In addition to their role in the charge‐balancing, of anionic POMs, the crucial role of organic cations in the formation and functionalization of POM‐based hybrid materials is discussed. DOI 10.1002/tcr.201100002  相似文献   

4.
The binding of a negatively charged residue, aspartic acid (Asp) in tripeptide arginine-glycine-aspartic acid, onto a negatively charged hydroxylated rutile (110) surface in aqueous solution, containing divalent (Mg(2+), Ca(2+), or Sr(2+)) or monovalent (Na(+), K(+), or Rb(+)) cations, was studied by molecular dynamics (MD) simulations. The results indicate that ionic radii and charges will significantly affect the hydration, adsorption geometry, and distance of cations from the rutile surface, thereby regulating the Asp/rutile binding mode. The adsorption strength of monovalent cations on the rutile surface in the order Na(+) > K(+) > Rb(+) shows a "reverse" lyotropic trend, while the divalent cations on the same surface exhibit a "regular" lyotropic behavior with decreasing crystallographic radii (the adsorption strength of divalent cations: Sr(2+) > Ca(2+) > Mg(2+)). The Asp side chain in NaCl, KCl, and RbCl solutions remains stably H-bonded to the surface hydroxyls and the inner-sphere adsorbed compensating monovalent cations act as a bridge between the COO(-) group and the rutile, helping to "trap" the negatively charged Asp side chain on the negatively charged surface. In contrast, the mediating divalent cations actively participate in linking the COO(-) group to the rutile surface; thus the Asp side chain can remain stably on the rutile (110) surface, even if it is not involved in any hydrogen bonds with the surface hydroxyls. Inner- and outer-sphere geometries are all possible mediation modes for divalent cations in bridging the peptide to the rutile surface.  相似文献   

5.
Mannose‐functionalized and ethoxyethanol‐functionalized poly(amido)amine dendrimers bound multiple vanadate‐substituted polyoxotungstate Wells–Dawson‐type polyoxometalates (POMs). Dendrimers incorporating 10–30 POMs were characterized with NMR, transmission electron microscopy, and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry techniques. The number of metal clusters per dendrimer molecule varied according to the dendrimer generation and the nature of the surface functional groups. Efforts aimed at using the poly(polyoxometalate) dendrimers as oxidation catalysts are also described. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3059–3066, 2005  相似文献   

6.
Anionic Keggin polyoxometalates (POMs) and ether linkage‐enriched ammonium ions spontaneously self‐assemble into rectangular ultrathin nanosheets in aqueous media. The structural flexibility of the cation is essential to form oriented nanosheets; as demonstrated by single‐crystal X‐ray diffraction measurements. The difference in initial conditions exerts significant influence on selecting for self‐assembly pathways in the energy landscape. Photoillumination of the POM sheets in pure water causes dissolution of reduced POMs, which allowed site‐specific etching of nanosheets using laser scanning microscopy. By contrast, photoetching was suppressed in aqueous AgNO3 and site‐selective deposition of silver nanoparticles occurred as a consequence of electron transfer from the photoreduced POMs to Ag+ ions on the nanosheet surface.  相似文献   

7.
The reaction between the paddle‐wheel tetrakis(acetato)chloridodiruthenium(II,III) complex, [Ru2(μ‐O2CCH3)4Cl] and hen egg‐white lysozyme (HEWL) was investigated through ESI‐MS and UV/Vis spectroscopy and the formation of a stable metal–protein adduct was unambiguously demonstrated. Remarkably, the diruthenium core is conserved in the adduct while two of the four acetate ligands are released. The crystal structure of this diruthenium–protein derivative was subsequently solved through X‐ray diffraction analysis to 2.1 Å resolution. The structural data are in agreement with the solution results. It was found that HEWL binds two diruthenium moieties, at Asp101 and Asp119, respectively, with the concomitant release of two acetate ligands from each diruthenium center.  相似文献   

8.
Three lipocyclopeptide antibiotics, aspartocins A (1), B (2), and C (3), were obtained from the aspartocin complex by HPLC separation methodology. Their structures were elucidated using previously published chemical degradation results coupled with spectroscopic studies including ESI‐MS, ESI‐Nozzle Skimmer‐MSMS and NMR. All three aspartocin compounds share the same cyclic decapeptide core of cyclo [Dab2 (Asp1‐FA)‐Pip3‐MeAsp4‐Asp5‐Gly6‐Asp7‐Gly8‐Dab9‐Val10‐Pro11]. They differ only in the fatty acid side chain moiety (FA) corresponding to (Z)‐13‐methyltetradec‐3‐ene‐carbonyl, (+,Z)‐12‐methyltetradec‐3‐ene‐carbonyl and (Z)‐12‐methyltridec‐3‐ene‐carbonyl for aspartocins A (1), B (2), and C (3), respectively. All of the sequence ions were observed by ESI‐MSMS of the doubly charged parent ions. However, a number of the sequence ions observed were of low abundance. To fully sequence the lipocyclopeptide antibiotic structures, these low abundance sequence ions together with complementary sequence ions were confirmed by ESI‐Nozzle‐Skimmer‐MSMS of the singly charged linear peptide parent fragment ions H‐Asp5‐Gly6‐Asp7‐Gly8‐Dab9‐Val10‐Pro11‐Dab21+‐Asp1‐FA. Cyclization of the aspartocins was demonstrated to occur via the β‐amino group of Dab2 from ions of moderate intensity in the ESI‐MSMS spectra. As the fatty acid moieties do not undergo internal fragmentations under the experimental ESI mass spectral conditions used, the 14 Da mass difference between the fatty acid moieties of aspartocins A (1) and B (2) versus aspartocin C (3) was used as an internal mass tag to differentiate fragment ions containing fatty acid moieties and those not containing the fatty acid moieties. The most numerous and abundant fragment ions observed in the tandem mass spectra are due to the cleavage of the tertiary nitrogen amide of the pipecolic acid residue‐3 (16 fragment ions) and the proline residue‐11 (7 fragment ions). In addition, the neutral loss of ethanimine from α,β‐diaminobutyric acid residue 9 was observed for the parent molecular ion and for 7 fragment ions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Monitoring the interaction of biomolecules is important, and the use of energy transfer is a principal technique in elucidating nanoscale interactions. Lanthanide compounds are promising luminescent probes for biological samples as their emission is longer‐lived than any native autofluorescence. Polyoxometalates (POMs) are interesting structural motifs to incorporate lanthanides, offering low toxicity and a size pertinent for biological applications. Here, we employ iso‐structured POMs containing either terbium or europium and assess their interaction with serum albumin by sensitisation of a fluorescent tag on the protein via LRET (luminescence resonance energy transfer) by exciting the lanthanide. Time‐resolved measurements showed energy transfer with an efficiency of over 90 % for the POM–protein systems. The Tb–POM results were relatively straightforward, while those with the iso‐structured Eu–POM were complicated by the effect of protein shielding from the aqueous environment.  相似文献   

10.
Amyloid precursor protein (APP) is the precursor protein to amyloid β (Aβ), the main constituent of senile plaques in Alzheimer's disease (AD). Endogenous Aβ peptides reflect the APP processing, and greater knowledge of different APP degradation pathways is important to understand the mechanism underlying AD pathology. When one analyzes longer Aβ peptides by low‐energy collision‐induced dissociation tandem mass spectrometry (MS/MS), mainly long b‐fragments are observed, limiting the possibility to determine variations such as amino acid variants or post‐translational modifications (PTMs) within the N‐terminal half of the peptide. However, by using electron capture dissociation (ECD), we obtained a more comprehensive sequence coverage for several APP/Aβ peptide species, thus enabling a deeper characterization of possible variants and PTMs. Abnormal APP/Aβ processing has also been described in the lysosomal storage disease Niemann–Pick type C and the major large animal used for studying this disease is cat. By ECD MS/MS, a substitution of Asp7 → Glu in cat Aβ was identified. Further, sialylated core 1 like O‐glycans at Tyr10, recently discovered in human Aβ (a previously unknown glycosylation type), were identified also in cat cerebrospinal fluid (CSF). It is therefore likely that this unusual type of glycosylation is common for (at least) species belonging to the magnorder Boreoeutheria. We here describe a detailed characterization of endogenous APP/Aβ peptide species in CSF by using an online top‐down MS‐based method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
A facile and electrostatically driven approach has been developed to prepare bicontinuous polymer nanocomposites that is based on the polyoxometalate (POM) macroion induced phase transition of PS‐b ‐P2VP from an initial lamellar phase to a stable bicontinuous phase. The multi‐charged POMs can electrostatically cross‐link P2VP blocks and give rise to bicontinuous phases in which the POM hybrid conductive domains occupy a large volume fraction of more than 50 %. Furthermore, the POMs can give rise to high proton conductivity and serve as nanoenhancers, endowing the bicontinuous nanocomposites with a conductivity of 0.1 mS cm−1 and a Young's modulus of 7.4 GPa at room temperature; these values are greater than those of pristine PS‐b ‐P2VP by two orders of magnitude and a factor of 1.8, respectively. This approach can provide a new concept based on electrostatic control to design functional bicontinuous polymer materials.  相似文献   

12.
13.
High-energy tandem mass spectrometry and molecular dynamics calculations are used to determine the locations of charge in metastably decomposing (M + 2H)2+ ions of human angiotensin II. Charge-separation reactions provide critical information regarding charge sites in multiple charged ions. The most probable kinetic energy released (Tm.p.) from these decompositions are obtained using kinetic energy release distributions (KERDs) in conjunction with MS/MS (MS2), MS/MS/MS (MS3), and MS/MS/MS/MS (MS4) experiments. The most abundant singly and doubly charged product ions arise from precursor ion structures in which one proton is located on the arginine (Arg) side chain and the other proton is located on a distal peptide backbone carbonyl oxygen. The MS3 KERD experiments show unequivocally that neither the N-terminal amine nor the aspartic acid (Asp) side chain are sites of protonation. In the gas phase, protonation of the less basic peptide backbone instead of the more proximal and basic histidine (His) side chain is favored as a result of reduced coulomb repulsion between the two charge sites. The singly and doubly charged product ions of lesser abundance arise from precursor ion structures in which one proton is located on the Arg side chain and the other on the His side chain. This is demonstrated in the MS3 and MS4 mass-analyzed ion kinetic energy spectrometry experiments. Interestingly, (b7" + OH)2+ product ions, like the (M + 2H)2+ ions of angiotensin II, are observed to have at least two different decomposing structures in which charge sites have a primary and secondary location.  相似文献   

14.
An optimized HPLC/MS/MS method was established to quantify glutamate (Glu) and aspartic acid (Asp) in rat hippocampus with glutamate‐d5 (Glu‐d5) as internal standard. The mass spectrometry was operated under the multiple reaction monitoring mode using electrospray ionization in the positive ion mode for Glu and negative ion mode for Asp. The retention times of Glu, Asp and Glu‐d5 were 1.53, 2.07 and 1.52 min, respectively. The linearity of calibration curves was good, with r2 > 0.99 and a lower limit of quantitation of 10 ng/mL. The intra‐day precisions (relative standard deviation, RSD) of Glu and Asp were in the range of 3.61–8.17 and 4.22–10.09%, respectively; the inter‐day precisions (RSD) of Glu and Asp were in the range of 3.57–5.19 and 2.49–5.04%, respectively. The accuracies of Glu and Asp were in the range of ?2.10–6.20 and ?0.90–10.00%, respectively. The recovery rates of 10, 100 and 1000 ng/mL were found to be 0.89 ± 0.24, 1.01 ± 0.10 and 0.90 ± 0.12 for Glu and 0.99 ± 0.26, 0.93 ± 0.07 and 1.13 ± 0.13 for Asp, respectively. This optimized method was successfully applied to quantify the concentration of Glu and Asp in rat hippocampus in brain ischemia/reperfusion research. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Mass spectrometry (MS) is used to quantify the relative distribution of glycans attached to particular protein glycosylation sites (micro‐heterogeneity) and evaluate the molar site occupancy (macro‐heterogeneity) in glycoproteomics. However, the accuracy of MS for such quantitative measurements remains to be clarified. As a key step towards this goal, a panel of related tryptic peptides with and without complex, biantennary, disialylated N‐glycans was chemically synthesised by solid‐phase peptide synthesis. Peptides mimicking those resulting from enzymatic deglycosylation using PNGase F/A and endo D/F/H were synthetically produced, carrying aspartic acid and N‐acetylglucosamine‐linked asparagine residues, respectively, at the glycosylation site. The MS ionisation/detection strengths of these pure, well‐defined and quantified compounds were investigated using various MS ionisation techniques and mass analysers (ESI‐IT, ESI‐Q‐TOF, MALDI‐TOF, ESI/MALDI‐FT‐ICR‐MS). Depending on the ion source/mass analyser, glycopeptides carrying complex‐type N‐glycans exhibited clearly lower signal strengths (10–50% of an unglycosylated peptide) when equimolar amounts were analysed. Less ionisation/detection bias was observed when the glycopeptides were analysed by nano‐ESI and medium‐pressure MALDI. The position of the glycosylation site within the tryptic peptides also influenced the signal response, in particular if detected as singly or doubly charged signals. This is the first study to systematically and quantitatively address and determine MS glycopeptide ionisation/detection strengths to evaluate glycoprotein micro‐heterogeneity and macro‐heterogeneity by label‐free approaches. These data form a much needed knowledge base for accurate quantitative glycoproteomics. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
We describe a method for probing surface‐exposed cysteines in proteins by selective labeling with p‐hydroxymercuribenzoate (PMB) combined with nano‐electrospray ionization mass spectrometric analysis (nanoESI‐MS). The rapid, stoichiometric, and specific labeling by PMB of surface‐exposed cysteines allows for characterization of the accessibility of the cysteines using a single MS analysis. Moreover, by taking advantage of the large mass shift of 321 Da, unique isotopic pattern, and enhanced MS signal of PMB‐labeled cysteine‐containing peptide fragments, the surface‐exposed cysteines in proteins can be accurately identified by peptide mapping. The number and sites of reactive cysteines on the surface of human and rat hemoglobins (hHb and rHb) were identified as examples. Collision‐induced dissociation tandem mass spectrometric (MS/MS) analysis of specific peptides further confirmed the selective labeling of PMB in hHb. The subtle difference between the different cysteine residues in rHb was also evaluated by multiple PMB titrations. The difference between the two cysteines in their environment may partially explain their reaction specificity. Cysteine 125 in the β unit of rHb is exposed on the surface, explaining its reactivity with glutathione. Cysteine 13 in the α subunit of rHb is much less exposed, and is located in a hydrophobic pocket, a conclusion that is consistent with the previous observation of its selective binding with dimethylarsinous acid, a reactive arsenic metabolite. The method is potentially useful for probing cysteines in other biologically important proteins and for studying proteins that are associated with conformational or structural changes induced by denaturing processes, protein modifications, protein‐protein interactions and protein assemblies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The molecular recognition of polyoxometalates by human serum albumin is studied using two different polyoxometalates (POMs) at pH 7.5. The results are compared with those obtained at pH 3.5 and 9.0. At pH 7.5, both POMs strongly interact with the protein with different binding behaviors. The Keggin shaped POM, [H(2)W(12)O(40)](6-) (H2W12), specifically binds the protein, forming a complex with a 1:1 stoichiometry with Ka = 2.9 x 10(6) M(-1). The binding constant decreased dramatically with the increase of the ionic strength, thus indicating a mostly electrostatic binding process. Isothermal titration calorimetry (ITC) experiments show that the binding is an enthalpically driven exothermic process. For the wheel shaped POM [NaP(5)W(30)O(110)](14-) (P5W30), there are up to five binding sites on the protein. Increasing the ionic strength changes the binding behavior significantly, leading to a simple exothermic process, with several binding sites. Competitive binding experiments indicate that the two POMs share one common binding site. In addition, they show the existence of another important binding site for P5W30. The two POMs exhibit different binding dependences on the pH. The combination of the experimental results with the knowledge of the surface map of the protein in its N-B conformation transition domain leads to the proposal for the probable binding site of POMs. The present work reveals a protein conformation change upon P5W30 binding, a new feature not explicitly documented in previous studies.  相似文献   

18.
The molecular interactions between the CeIV‐substituted Keggin anion [PW11O39Ce(OH2)4]3? ( CeK ) and hen egg‐white lysozyme (HEWL) were investigated by molecular dynamics simulations. The analysis of CeK was compared with the CeIV‐substituted Keggin dimer [(PW11O39)2Ce]10? ( CeK2 ) and the ZrIV‐substituted Lindqvist anion [W5O18Zr(OH2)(OH)]3? ( ZrL ) to understand how POM features such as shape, size, charge, or type of incorporated metal ion influence the POM???protein interactions. Simulations revealed two regions of the protein in which the CeK anion interacts strongly: cationic sites formed by Arg21 and by Arg45 and Arg68. The POMs chiefly interact with the side chains of the positively charged (arginines, lysines) and the polar uncharged residues (tyrosines, serines, aspargines) via electrostatic attraction and hydrogen bonding with the oxygen atoms of the POM framework. The CeK anion shows higher protein affinity than the CeK2 and ZrL anions, because it is less hydrophilic and it has the right size and shape for establishing interactions with several residues simultaneously. The larger, more negatively charged CeK2 anion has a high solvent‐accessible surface, which is sub‐optimal for the interaction, while the smaller ZrL anion is highly hydrophilic and cannot efficiently interact with several residues simultaneously.  相似文献   

19.
Direct tandem mass spectrometric (MS/MS) analysis of small, singly charged protein ions by tandem time-of-flight mass spectrometry (TOFMS) is demonstrated for proteins up to a molecular mass of 12 kDa. The MALDI-generated singly charged precursor ions predominantly yield product ions resulting from metastable fragmentation at aspartyl and prolyl residues. Additional series of C-terminal sequence ions provide in some cases sufficient information for protein identification. The amount of sample required to obtain good quality spectra is in the high femtomolar to low picomolar range. Within this range, MALDI-MS/MS using TOF/TOF trade mark ion optics now provides the opportunity for direct protein identification and partial characterization without prior enzymatic hydrolysis.  相似文献   

20.
Comparative MS/MS studies of singly and doubly charged electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) precursor peptide ions are described. The spectra from these experiments have been evaluated with particular emphasis on the data quality for subsequent data processing and protein/amino acid sequence identification. It is shown that, once peptide ions are formed by ESI or MALDI, their charge state, as well as the collision energy, is the main parameter determining the quality of collision-induced dissociation (CID) MS/MS fragmentation spectra of a given peptide. CID-MS/MS spectra of singly charged peptides obtained on a hybrid quadrupole orthogonal time-of-flight mass spectrometer resemble very closely spectra obtained by matrix-assisted laser desorption/ionization post-source decay time-of-flight mass spectrometry (MALDI-PSD-TOFMS). On the other hand, comparison of CID-MS/MS spectra of either singly or doubly charged ion species shows no dependence on whether ions have been formed by ESI or MALDI. This observation confirms that, at the time of precursor ion selection, further mass analysis is effectively decoupled from the desorption/ionization event. Since MALDI ions are predominantly formed as singly charged species and ESI ions as doubly charged, the associated difference in the spectral quality of MS/MS spectra as described here imposes direct consequences on data processing, database searching using ion fragmentation data, and de novo sequencing when ionization techniques are changed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号