首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
An efficient and universal method to directly hybridize isocharged nanosheets of layered metal oxide and reduced graphene oxide (rGO) is developed on the basis of the surface modification and an electrostatically driven assembly process. On the basis of this synthetic method, the CoO2–rGO nanocomposite can be synthesized with exfoliated CoO2 and rGO nanosheets, and transformed into CoO–CoO2–rGO nanocomposites with excellent electrode performance for lithium‐ion batteries. Also, this surface‐modification assembly route is successfully applied for the synthesis of another mesoporous TiO2–rGO nanocomposite. This result provides clear evidence for the usefulness of the present method as a universal way of hybridizing isocharged anionic nanosheets of inorganic solids and graphene.  相似文献   

2.
A colloidal suspension of exfoliated, layered cobalt oxide nanosheets has been synthesized through the intercalation of quaternary tetramethylammonium ions into protonated lithium cobalt oxide. According to atomic force microscopy, exfoliated nanosheets of layered cobalt oxide show a plateau‐like height profile with nanometer‐level height, underscoring the formation of unilamellar 2D nanosheets. The exfoliation of layered cobalt oxide was cross‐confirmed by X‐ray diffraction, UV/Vis spectroscopy, and transmission electron microscopy. The maintenance of the hexagonal in‐plane structure of the cobalt oxide lattice after the exfoliation process was evidenced by selected‐area electron diffraction and Co K‐edge X‐ray absorption near‐edge structure analysis. The zeta‐potential measurements clearly demonstrated the negative surface charge of cobalt oxide nanosheets. Adopting the nanosheets of layered cobalt oxide as a precursor, we were able to prepare the monodisperse CoO nanocrystals with a particle size of ≈10 nm as well as the heterolayered film composed of cobalt oxide monolayer and polycation.  相似文献   

3.
Composition‐tailored Mn1?xRuxO2 2 D nanosheets and their reassembled nanocomposites with mesoporous stacking structure are synthesized by a soft‐chemical exfoliation reaction and the subsequent reassembling of the exfoliated nanosheets with Li+ cations, respectively. The tailoring of the chemical compositions of the exfoliated Mn1?xRuxO2 2 D nanosheets and their lithiated nanocomposites can be achieved by adopting the Ru‐substituted layered manganese oxides as host materials for exfoliation reaction. Upon the exfoliation–reassembling process, the substituted ruthenium ions remain stabilized in the layered Mn1?xRuxO2 lattice with mixed Ru3+/Ru4+ oxidation state. The reassembled Li–Mn1?xRuxO2 nanocomposites show promising pseudocapacitance performance with large specific capacitances of approximately 330 F g?1 for the second cycle and approximately 360 F g?1 for the 500th cycle and excellent cyclability, which are superior to those of the unsubstituted Li–MnO2 homologue and many other MnO2‐based materials. Electrochemical impedance spectroscopy analysis provides strong evidence for the enhancement of the electrical conductivity of 2 D nanostructured manganese oxide upon Ru substitution, which is mainly responsible for the excellent electrode performance of Li–Mn1?xRuxO2 nanocomposites. The results underscore the powerful role of the composition‐controllable metal oxide 2 D nanosheets as building blocks for exploring efficient electrode materials.  相似文献   

4.
A new prompt room temperature synthetic route to 2D nanostructured metal oxide–graphene‐hybrid electrode materials can be developed by the application of colloidal reduced graphene oxide (RGO) nanosheets as an efficient reaction accelerator for the synthesis of δ‐MnO2 2D nanoplates. Whereas the synthesis of the 2D nanostructured δ‐MnO2 at room temperature requires treating divalent manganese compounds with persulfate ions for at least 24 h, the addition of RGO nanosheet causes a dramatic shortening of synthesis time to 1 h, underscoring its effectiveness for the promotion of the formation of 2D nanostructured metal oxide. To the best of our knowledge, this is the first example of the accelerated synthesis of 2D nanostructured hybrid material induced by the RGO nanosheets. The observed acceleration of nanoplate formation upon the addition of RGO nanosheets is attributable to the enhancement of the oxidizing power of persulfate ions, the increase of the solubility of precursor MnCO3, and the promoted crystal growth of δ‐MnO2 2D nanoplates. The resulting hybridization between RGO nanosheets and δ‐MnO2 nanoplates is quite powerful not only in increasing the surface area of manganese oxide nanoplate but also in enhancing its electrochemical activity. Of prime importance is that the present δ‐MnO2–RGO nanocomposites show much superior electrode performance over most of 2D nanostructured manganate systems including a similar porous assembly of RGO and layered MnO2 nanosheets. This result underscores that the present RGO‐assisted solution‐based synthesis can provide a prompt and scalable method to produce nanostructured hybrid electrode materials.  相似文献   

5.
Much attention has recently been focused on the synthesis and application of graphene analogues of layered nanomaterials owing to their better electrochemical performance than the bulk counterparts. We synthesized graphene analogue of 3D MoS2 hierarchical nanoarchitectures through a facile hydrothermal route. The graphene‐like MoS2 nanosheets are uniformly dispersed in an amorphous carbon matrix produced in situ by hydrothermal carbonization. The interlaminar distance between the MoS2 nanosheets is about 1.38 nm, which is far larger than that of bulk MoS2 (0.62 nm). Such a layered architecture is especially beneficial for the intercalation and deintercalation of Li+. When tested as a lithium‐storage anode material, the graphene‐like MoS2 hierarchical nanoarchitectures exhibit high specific capacity, superior rate capability, and enhanced cycling performance. This material shows a high reversible capacity of 813.5 mAh g?1 at a current density of 1000 mA g?1 after 100 cycles and a specific capacity as high as 600 mAh g?1 could be retained even at a current density of 4000 mA g?1. The results further demonstrate that constructing 3D graphene‐like hierarchical nanoarchitectures can effectively improve the electrochemical performance of electrode materials.  相似文献   

6.
Two‐dimensional nanosheets with high specific surface areas and fascinating physical and chemical properties have attracted tremendous interests because of their promising potentials in both fundamental research and practical applications. However, the problem of developing a universal strategy with a facile and cost‐effective synthesis process for multi‐type ultrathin 2 D nanostructures remains unresolved. Herein, we report a generalized low‐temperature fabrication of scalable multi‐type 2 D nanosheets including metal hydroxides (such as Ni(OH)2, Co(OH)2, Cd(OH)2, and Mg(OH)2), metal oxides (such as ZnO and Mn3O4), and layered mixed transition‐metal hydroxides (Ni‐Co LDH, Ni‐Fe LDH, Co‐Fe LDH, and Ni‐Co‐Fe layered ternary hydroxides) through the rational employment of a green soft‐template. The synthesized crystalline inorganic nanosheets possess confined thickness, resulting in ultrahigh surface atom ratios and chemically reactive facets. Upon evaluation as electrode materials for pseudocapacitors, the Ni‐Co LDH nanosheets exhibit a high specific capacitance of 1087 F g?1 at a current density of 1 A g?1, and excellent stability, with 103 % retention after 500 cycles. This strategy is facile and scalable for the production of high‐quality ultrathin crystalline inorganic nanosheets, with the possibility of extension to the preparation of other complex nanosheets.  相似文献   

7.
Two types of layered hydroxide zinc m‐aminobenzoate compounds with structures of layered basic metal salt (LBMS) were prepared by the reaction of zinc hydroxide with m‐aminobenzoic acid solution in the temperature range of 40–120°C. The formation reactions, structures, chemical compositions, and exfoliation reactions of the layered compounds in alcohol solvents were investigated by XRD, TG‐DTA, SEM, and TEM. One layered phase with a basal spacing of 1.08 nm has a α‐Ni(OH)2‐like structure, and its chemical formula can be written as Zn(OH)0.67(m‐NH2C6H4COO)1.33. This phase has strip‐like particle morphology and cannot be exfoliated into its nanosheets in alcohol solvents. The other layered phase with a basal spacing of 2.66 nm has a zinc hydroxide‐nitrate‐like structure, and can be exfoliated in alcohol solvents.  相似文献   

8.
Ultrathin two‐dimensional nanosheets have been widely studied because of their peculiar properties and promising applications. As a typical layered material, successful exfoliation of freestanding ultrathin lepidocrocite (γ‐FeOOH) nanosheets from the bulk material has not been reported to date. Herein, we report a facile synthetic route to prepare ultrathin lepidocrocite nanosheets with a thickness of approximately 2–3 nm from FeOx–propanediol layered precursors through weakening of the hydrogen bonds during the crystallization process. The ultrathin morphology and single‐crystal structure of the nanosheets were confirmed by transmission electron microscopy, X‐ray diffraction, and atomic force microscopy. The formation process of these nanosheets demonstrated simultaneous exfoliation and crystallization of lepidocrocite in basic aqueous solution. The obtained ultrathin nanosheets exhibited a much lower Néel temperature (18.3 K) than bulk lepidocrocite and weak ferromagnetic behavior below this temperature.  相似文献   

9.
In the present study, we report the synthesis of a high‐quality, single‐crystal hexagonal β‐Co(OH)2 nanosheet, exhibiting a thickness down to ten atomic layers and an aspect ratio exceeding 900, by using graphene oxide (GO) as an exfoliant of β‐Co(OH)2 nanoflowers. Unlike conventional approaches using ionic precursors in which morphological control is realized by structure‐directing molecules, the β‐Co(OH)2 flower‐like superstructures were first grown by a nanoparticle‐mediated crystallization process, which results in large 3D superstructure consisting of ultrathin nanosheets interspaced by polydimethoxyaniline (PDMA). Thereafter, β‐Co(OH)2 nanoflowers were chemically exfoliated by surface‐active GO under hydrothermal conditions into unilamellar single‐crystal nanosheets. In this reaction, GO acts as a two‐dimensional (2D) amphiphile to facilitate the exfoliation process through tailored interactions between organic and inorganic molecules. Meanwhile, the on‐site conjugation of GO and Co(OH)2 promotes the thermodynamic stability of freestanding ultrathin nanosheets and restrains further growth through Oswald ripening. The unique 2D structure combined with functionalities of the hybrid ultrathin Co(OH)2 nanosheets on rGO resulted in a remarkably enhanced lithium‐ion storage performance as anode materials, maintaining a reversible capacity of 860 mA h g?1 for as many as 30 cycles. Since mesocrystals are ubiquitous and rich in morphological diversity, the strategy of the GO‐assisted exfoliation of mesocrystals developed here provides an opportunity for the synthesis of new functional nanostructures that could bear importance in clean renewable energy, catalysis, photoelectronics, and photonics.  相似文献   

10.
Synthesizing nanomaterials with anisotropic architectures, especially two‐dimensional (2D) nanosheets (NSs), is a key focus of materials science research. Metal sulfide nanosheets (MSNSs) are typically obtained involving exfoliation of bulk metal sulfides with layered structures. The synthesis of NSs of intrinsically non‐layered metal sulfides has received relatively less attention. Metal alkanethiolates with lamellar structures are now shown to serve as effective scaffolds for constructing NSs. A novel photochemical step was employed to transform 2D metal thiolates into MSNSs. By this strategy the 2D nature of metal thiolate precursors was preserved in the final products, resulting in the successful synthesis of NSs of binary PbS, CdS, and Cu9S5, as well as ternary wurtzite CuInS2, Cu2SnS3. Results encourage the wider utilization of photochemical strategies in the synthesis of anisotropic MSNSs.  相似文献   

11.
Owing to their unique physical and chemical properties, layered two‐dimensional (2D) materials have been established as the most significant topic in materials science for the current decade. This includes layers comprising mono‐element (graphene, phosphorene), di‐element (metal dichalcogenides), and even multi‐element. A distinctive class of 2D layered materials is the metal phosphorous trichalcogenides (MPCh3, Ch=S, Se), first synthesized in the late 1800s. Having an unusual intercalation behavior, MPCh3 were intensively studied in the 1970s for their magnetic properties and as secondary electrodes in lithium batteries, but fell from scrutiny until very recently, being 2D nanomaterials. Based on their synthesis and most significant properties, the present surge of reports related to water‐splitting catalysis and energy storage are discussed in detail. This Minireview is intended as a baseline for the anticipated new wave of researchers who aim to explore these 2D layered materials for their electrochemical energy applications.  相似文献   

12.
Research into 2-dimensional materials has soared during the last couple of years. Next to van der Waals type 2D materials such as graphene and h-BN, less well-known oxidic 2D equivalents also exist. Most 2D oxide nanosheets are derived from layered metal oxide phases, although few 2D oxide phases can be also made by bottom-up solution syntheses. Owing to the strong electrostatic interactions within layered metal oxide crystals, a chemical process is usually needed to delaminate them into their 2D constituents. This Review article provides an overview of the synthesis of oxide nanosheets, and methods to assemble them into nanocomposites, mono- or multilayer films. In particular, the use of Langmuir–Blodgett methods to form monolayer films over large surface areas, and the emerging use of ink jet printing to form patterned functional films is emphasized. The utilization of nanosheets in various areas of technology, for example, electronics, energy storage and tribology, is illustrated, with special focus on their use as seed layers for epitaxial growth of thin films, and as electrochemically active electrodes for supercapacitors and Li ion batteries.  相似文献   

13.
A two‐dimensional (2D) layered MgII coordination polymer (CP) with a high tolerance for H2O was designed, synthesised, and crystallographically characterised. The synthesis was achieved by the introduction of a flexible 2D layered structure composed of MgII ions and isonicotinate N‐oxide ligands. Owing to its high H2O tolerance, the obtained 2D layered structure has the flexibility to repeatedly adsorb a large amount of H2O associated with interlayer expansion and enable the removal of H2O from a H2O/2‐propanol mixed vapour. These results indicate that the CP could be an excellent dehydrating agent.  相似文献   

14.
2D metal–organic nanosheets (MONs), akin to graphene, have aroused immense contemporary interest. In our quest to develop functional 2D MONs based on organic linkers designed de novo, we reasoned that benzene-tetrabenzoic acid, which has been exploited tremendously in the construction of pillared metal–organic frameworks (MOFs), could be maneuvered readily to access redox-active MONs based on the benzoquinone/hydroquinone redox couple. Herein, we show that the self-assembly of 2,3,5,6-tetrakis(p-carboxyphenyl)hydroquinone H4BTA with Zn(NO3)2 does lead to 2D metal–organic nanosheets that stack down the y axis, affording a layered Zn MOF. Although the crystals of the latter do not exhibit a discernible chemically induced redox switching behavior, the 2D MONs accessed by ultrasound-induced liquid-phase exfoliation (UILPE) lend themselves to a facile redox switching behavior. Treatment of a dispersion of the 2D MONs in methanol with phenyliodine(III) diacetate (PIDA) results in the oxidation of the hydroquinone core to benzoquinone. Remarkably, the latter can be reverted to the former by treatment with ascorbic acid as a reducing agent; indeed, the redox process can be made out by the naked eye. The results constitute the first example of chemically induced redox switching of 2D MONs. In view of emergent applications of 2D materials in general and MONs in particular, for example, improvement of the performance of membranes in separations by doping with MONs, the redox-switchable property may lead to the development of unique materials with heretofore unexplored potential.  相似文献   

15.
The intercalation chemistry of a layered protonic ruthenate, H0.2RuO2.1·nH2O, derived from a layered potassium ruthenate was studied in detail. Three phases with different hydration states were isolated, H0.2RuO2.1·nH2O (n=0, 0.5, 0.9), and its reactivity with tetrabutylammonium ions (TBA+) was considered. The layered protonic ruthenate mono-hydrate readily reacted with TBA+, affording direct intercalation of bulky tetrabutylammonium ions into the interlayer gallery. Fine-tuning the reaction conditions allowed exfoliation of the layered ruthenate into elementary nanosheets and thereby a simplified one-step exfoliation was achieved. Microscopic observation by atomic force microscopy and transmission electron microscopy clearly showed the formation of unilamellar sheets with very high two-dimensional anisotropy, a thickness of only 1.3±0.1 nm. The nanosheets were characterized by two-dimensional crystallites with the oblique cell of a=0.5610(8) nm, b=0.5121(6) nm and γ=109.4(2)° on the basis of in-plane diffraction analysis.  相似文献   

16.
Two dimensional (2D) nanoribbons constitute an emerging nanoarchitecture for advanced microelectronics and energy conversion due to the stronger size confinement effects compared to traditional nanosheets. Triclinic crystalline red phosphorus (cRP) composed by a layered structure is a promising 2D phosphorus allotrope and the tube‐like substructure is beneficial to the construction of nanoribbons. In this work, few‐layer cRP nanoribbons are synthesized and the effectiveness in the electrochemical nitrogen reduction reaction (NRR) is investigated. An iodine‐assisted chemical vapor transport (CVT) method is developed to synthesize circa 10 g of bulk cRP lumps with a yield of over 99 %. With the aid of probe ultrasonic treatment, high‐quality cRP microcrystals are exfoliated into few‐layer nanoribbons (cRP NRs) with large aspect ratios. As non‐metallic materials, cRP NRs are suitable for the electrochemical nitrogen reduction reaction. The ammonia yield is 15.4 μg h?1 mgcat.?1 at ?0.4 V vs. reversible hydrogen electrode in a neutral electrolyte under ambient conditions and the Faradaic efficiency is 9.4 % at ?0.2 V. Not only is cRP a promising catalyst, but also the novel strategy expands the application of phosphorus‐based 2D structures beyond that of traditional nanosheets.  相似文献   

17.
Demands for large‐scale energy storage systems have driven the development of layered transition‐metal oxide cathodes for room‐temperature rechargeable sodium ion batteries (SIBs). Now, an abnormal layered‐tunnel heterostructure Na0.44Co0.1Mn0.9O2 cathode material induced by chemical element substitution is reported. By virtue of beneficial synergistic effects, this layered‐tunnel electrode shows outstanding electrochemical performance in sodium half‐cell system and excellent compatibility with hard carbon anode in sodium full‐cell system. The underlying formation process, charge compensation mechanism, phase transition, and sodium‐ion storage electrochemistry are clearly articulated and confirmed through combined analyses of in situ high‐energy X‐ray diffraction and ex situ X‐ray absorption spectroscopy as well as operando X‐ray diffraction. This crystal structure engineering regulation strategy offers a future outlook into advanced cathode materials for SIBs.  相似文献   

18.
Abstract

An interesting nanostructured non-stoichiometric vanadium oxide bronze (CaxV2O5?yH2O) is incorporated as the active material in an aqueous zinc-ion intercalation device. Simple solvothermal synthesis route produces highly crystalline and strongly oriented nanobelt structures as characterized by microscopy. Upon cycling, the cathode materials are recovered for an X-ray absorption investigation of local electronic and geometric changes for both the host vanadium oxide and the intercalated zinc ion as a function of voltage. This multi-edge study presents changes in Zn–O coordination and suggests Zn-ion occupancy site through theoretical calculations. The layered vanadium host shows gradual oxidation state reduction from charge density donation during intercalation while the Zn ion maintains the +2 oxidation state. The findings add understanding to the mechanisms involved in aqueous electrochemical storage devices.  相似文献   

19.
Two‐dimensional (2D) layered graphitic carbon nitride (gCN) nanosheets offer intriguing electronic and chemical properties. However, the exfoliation and functionalisation of gCN for specific applications remain challenging. We report a scalable one‐pot reductive method to produce solutions of single‐ and few‐layer 2D gCN nanosheets with excellent stability in a high mass yield (35 %) from polytriazine imide. High‐resolution imaging confirmed the intact crystalline structure and identified an AB stacking for gCN layers. The charge allows deliberate organic functionalisation of dissolved gCN, providing a general route to adjust their properties.  相似文献   

20.
Sonochemical reduction of copper nitrate, using 20 kHz ultrasound in aqueous solutions in the presence of urea, led to the formation of layered copper hydroxy nitrate nanosheets, as evidenced by scanning and transmission electron microscopy images. Fourier‐transform infrared, X‐ray diffraction, and X‐ray photoelectron spectroscopy analyses were used to characterize layered Cu2(OH)3NO3 nanosheets. The ultrasound‐assisted progressive hydrolysis of urea and in situ formation of Cu(0) through the sonochemical reduction process induced homogeneous nucleation and crystallization of layered Cu2(OH)3NO3 nanosheets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号