首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Visible‐light‐induced ruthenium catalysis has enabled remote C?H alkylations with excellent levels of position control under exceedingly mild conditions at room temperature. The metallaphotocatalysis occurred under exogenous‐photosensitizer‐free conditions and features an ample substrate scope. The robust nature of the photo‐induced mild meta‐C?H functionalization is reflected by the broad functional group tolerance, and the reaction can be carried out in an operationally simple manner, setting the stage for challenging secondary and tertiary meta‐C?H alkylations by ruthenaphotoredox catalysis.  相似文献   

2.
Expedient C? H aminocarbonylations of unactivated (hetero)arenes and alkenes were accomplished with a cobalt(III) catalyst that shows high functional group tolerance. The C? H functionalization occurred with excellent chemo‐, site‐, and diastereoselectivity and enabled step‐economical reactions with isocyanates or acyl azides.  相似文献   

3.
C?H activation bears great potential for enabling sustainable molecular syntheses in a step‐ and atom‐economical manner, with major advances having been realized with precious 4d and 5d transition metals. In contrast, we employed earth abundant, nontoxic iron catalysts for versatile allene annulations through a unique C?H/N?H/C?O/C?H functionalization sequence. The powerful iron catalysis occurred under external‐oxidant‐free conditions even at room temperature, while detailed mechanistic studies revealed an unprecedented 1,4‐iron migration regime for facile C?H activations.  相似文献   

4.
Manganese‐catalyzed C? H functionalization reactions of ketimines set the stage for the expedient synthesis of cis‐β‐amino acid esters through site‐ and regioselective alkene annulations. The organometallic C? H activation occurred efficiently with high functional group tolerance, delivering densely functionalized β‐amino acid derivatives with ample scope.  相似文献   

5.
The step‐economical late‐stage diversification of tryptophan‐containing peptides was accomplished through chemo‐ and site‐selective palladium‐catalyzed C?H arylation under exceedingly mild reaction conditions. Thus, the C?H functionalization occurred efficiently at 23 °C with a catalyst loading as low as 0.5 mol %, and/or in H2O.  相似文献   

6.
A previously elusive RuII‐catalyzed N?N bond‐based traceless C?H functionalization strategy is reported. An N‐amino (i.e., hydrazine) group is used for the directed C?H functionalization with either an alkyne or an alkene, affording an indole derivative or olefination product. The synthesis features a broad substrate scope, superior atom and step economy, as well as mild reaction conditions.  相似文献   

7.
In recent years, transition‐metal‐catalyzed C?H activation has become a key strategy in the field of organic synthesis. Rhodium complexes are widely used as catalysts in a variety of C?H functionalization reactions because of their high reactivity and selectivity. The availability of a number of rhodium complexes in various oxidation states enables diverse reaction patterns to be obtained. Regioselectivity, an important issue in C?H activation chemistry, can be accomplished by using a directing group to assist the reaction. However, to obtain the target functionalized compounds, it is also necessary to use a directing group that can be easily removed. A wide range of directed C?H functionalization reactions catalyzed by rhodium complexes have been reported to date. In this Review, we discuss Rh‐catalyzed C?H functionalization reactions that are aided by the use of a removable directing group such as phenol, amine, aldehyde, ketones, ester, acid, sulfonic acid, and N‐heteroaromatic derivatives.  相似文献   

8.
An alkoxyl radical guided strategy for site‐selective functionalization of unactivated methylene and methine C?H bonds enabled by an FeII‐catalyzed redox process is described. The mild, expeditious, and modular protocol allows efficient remote aliphatic fluorination, chlorination, amination, and alkynylation of structurally and electronically varied primary, secondary, and tertiary hydroperoxides with excellent functional‐group tolerance. The application for one‐pot 1,4‐hydroxyl functionalization of non‐oxygenated alkane substrates initiated by aerobic C?H oxygenation is also demonstrated.  相似文献   

9.
A palladium(II)‐catalyzed thioketone‐chelation‐assisted direct C?H arylation of ferrocenes is described. With thioketone as an efficient directing group, various monoaryl‐ and diaryl‐substituted thiocarbonylferrocenes were obtained by palladium‐catalyzed direct C?H functionalization in high yields under mild and base‐free reaction conditions. Furthermore, the arylated thiocarbonylferrocene could undergo diverse transformations.  相似文献   

10.
Diaryliodonium salts play an increasingly important role as an aryl source. Reported is the first synthesis of diaryliodoniums by rhodium(III)‐catalyzed C H hyperiodination of electron‐poor arenes under chelation assistance. This C I coupling reaction occurred at room temperature with high regio‐selectivity and functional‐group compatibility. Subsequent diversified nucleophilic functionalization of a diaryliodonium allowed facile construction of C C, C N, C O, C S, C P and C Br bonds, and in all cases the initial functionalization occurred at the arene containing the chelating‐group.  相似文献   

11.
The N‐centered radical directed remote C?H bond functionalization via hydrogen‐atom‐transfer at distant sites has developed as an enormous potential tool for the organic synthetic chemists. Unactivated and remote secondary and tertiary, as well as selected primary C?H bonds, can be utilized for functionalization by following these methodologies. The synthesis of the heterocyclic scaffolds provides them extra attention for the modern days′ developments in this field of unactivated remote C?H bonds functionalizations.  相似文献   

12.
The functionalization of C(sp3)?H bonds streamlines chemical synthesis by allowing the use of simple molecules and providing novel synthetic disconnections. Intensive recent efforts in the development of new reactions based on C?H functionalization have led to its wider adoption across a range of research areas. This Review discusses the strengths and weaknesses of three main approaches: transition‐metal‐catalyzed C?H activation, 1,n‐hydrogen atom transfer, and transition‐metal‐catalyzed carbene/nitrene transfer, for the directed functionalization of unactivated C(sp3)?H bonds. For each strategy, the scope, the reactivity of different C?H bonds, the position of the reacting C?H bonds relative to the directing group, and stereochemical outcomes are illustrated with examples in the literature. The aim of this Review is to provide guidance for the use of C?H functionalization reactions and inspire future research in this area.  相似文献   

13.
Atropo‐enantioselective C?H functionalization reactions are largely limited to the dynamic kinetic resolution of biaryl substrates through the introduction of steric bulk proximal to the axis of chirality. Reported herein is a highly atropo‐enantioselective palladium(0)‐catalyzed methodology that forges the axis of chirality during the C?H functionalization process, enabling the synthesis of axially chiral dibenzazepinones. Computational investigations support experimentally determined racemization barriers, while also indicating C?H functionalization proceeds by an enantio‐determining CMD to yield configurationally stable eight‐membered palladacycles.  相似文献   

14.
The asymmetric functionalization of C?H bond is a particularly valuable approach for the production of enantioenriched chiral organic compounds. Chiral N‐heterocyclic carbene (NHC) ligands have become ubiquitous in enantioselective transition‐metal catalysis. Conversely, the use of chiral NHC ligands in metal‐catalyzed asymmetric C?H bond functionalization is still at an early stage. This minireview highlights all the developments and the new advances in this rapidly evolving research area.  相似文献   

15.
Manganese‐catalyzed C?H bond activation chemistry is emerging as a powerful and complementary method for molecular functionalization. A highly reactive seven‐membered MnI intermediate is detected and characterized that is effective for H‐transfer or reductive elimination to deliver alkenylated or pyridinium products, respectively. The two pathways are determined at MnI by judicious choice of an electron‐deficient 2‐pyrone substrate containing a 2‐pyridyl directing group, which undergoes regioselective C?H bond activation, serving as a valuable system for probing the mechanistic features of Mn C?H bond activation chemistry.  相似文献   

16.
Described is a practical and universal C? H functionalization of readily removable N‐benzyl and N‐allyl carbamates, with a wide range of nucleophiles at ambient temperature promoted by Ph3CClO4. The metal‐free reaction has an excellent functional‐group tolerance, and displays a broad scope with respect to both N‐carbamates and nucleophile partners (a variety of organoboranes and C? H compounds). The synthetic utility in target‐ as well as diversity‐oriented syntheses is demonstrated.  相似文献   

17.
Transition metal catalyzed C?H functionalizations have been developed as powerful methods for C?C bond formations. Directing groups, removable directing groups, traceless directing groups, and transient directing groups (TDGs) have been successfully used to improve the reaction efficiencies. For the development of greener and more sustainable methods, C?H functionalization using a TDG that also serves as a reagent in aqueous solvent was investigated. The palladium‐catalyzed C?H functionalization of tryptamine derivatives using ketones in water successfully generated tetrahydro‐β‐carbolines with a quaternary carbon center at C1. Deuterium‐labeling experiments are discussed to provide insight into the mechanism. The C2‐position of pyridine was also successfully functionalized by this strategy.  相似文献   

18.
C?H functionalization of aliphatic carboxylic acids without attaching exogenous auxiliary has been so far limited at the proximal β‐position. In this work, we demonstrate a ligand enabled palladium catalyzed first regioselective distal γ‐C(sp3)?H functionalization of aliphatic carboxylic acids without incorporating an exogenous directing group. Aryl iodides containing versatile functional groups including complex organic molecules are well tolerated with good to excellent yields during the γ‐C(sp3)?H arylation reaction. Interestingly, weak coordination of carboxylate group can be further extended for sequential hetero di‐arylation. Application of the protocol has been showcased by synthesizing substituted α‐tetralone. Mechanistic investigations have been carried out to shed light on the reaction pathway.  相似文献   

19.
Polyolefins that contain polar functional groups are important materials for next‐generation lightweight engineering thermoplastics. Post‐polymerization modification is an ideal method for the incorporation of polar groups into branched polyolefins; however, it typically results in chain scission events, which have deleterious effects on polymer properties. Herein, we report a metal‐free method for radical‐mediated C?H xanthylation that results in the regioselective functionalization of branched polyolefins without coincident polymer‐chain scission. This method enables a tunable degree of polymer functionalization and capitalizes on the versatility of the xanthate functional group to unlock a wide variety of C?H transformations previously inaccessible on branched polyolefins.  相似文献   

20.
Achieving site selectivity in carbon–hydrogen (C?H) functionalization reactions is a formidable challenge in organic chemistry. Herein, we report a novel approach to activating remote C?H bonds at the C5 position of 8‐aminoquinoline through copper‐catalyzed sulfonylation under mild conditions. Our strategy shows high conversion efficiency, a broad substrate scope, and good toleration with different functional groups. Furthermore, our mechanistic investigations suggest that a single‐electron‐transfer process plays a vital role in generating sulfonyl radicals and subsequently initiating C?S cross‐coupling. Importantly, our copper‐catalyzed remote functionalization protocol can be expanded for the construction of a variety of chemical bonds, including C?O, C?Br, C?N, C?C, and C?I. These findings provide a fundamental insight into the activation of remote C?H bonds, while offering new possibilities for rational design of drug molecules and optoelectronic materials requiring specific modification of functional groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号