首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The depletion of fossil fuels has accelerated the search for clean, sustainable, scalable, and environmentally friendly alternative energy sources. Hydrogen is a potential energy carrier because of its advantageous properties, and the electrolysis of water is considered as an efficient method for its industrial production. However, the high-energy conversion efficiency of electrochemical water splitting requires cost-effective and highly active electrocatalysts. Therefore, researchers have aimed to develop high-performance electrode materials based on non-precious and abundant transition metals for conversion devices. Moreover, to further reduce the cost and complexity in real-world applications, bifunctional catalysts that can be simultaneously active on both the anodic (i.e., oxygen evolution reaction, OER) and cathodic (i.e., hydrogen evolution reaction, HER) sides are economically and technically desirable. This Minireview focuses on the recent progress in transition-metal-based materials as bifunctional electrocatalysts, including several promising strategies to promote electrocatalytic activities for overall water splitting in alkaline media, such as chemical doping, defect (vacancy) engineering, phase engineering, facet engineering, and structure engineering. Finally, the potential for further developments in rational electrode materials design is also discussed.  相似文献   

4.
To achieve efficient water splitting, it is essential to develop catalysts with high electrochemical performance, enhanced durability and tunable properties. Most of the transition metal‐based catalysts employed for the water splitting have been fabricated on the solid‐electrode support by using binder, which decreases the activity and durability of the catalyst system. In this respect, self‐supported metal organic framework (MOF) derived catalysts have been introduced with enhanced catalytic activity and mechanical stability for the electrochemical water splitting. The self‐supported MOF derived catalysts exhibit improved electronic conductivity, high electrochemical surface area, enhanced mechanical stability and strong catalyst‐support interaction. Moreover, these catalysts possess highly porous and hollow structure with designed morphology and multi‐metallic composition. Recently, a tremendous effort has been provided to explore this newly growing field and new dimensions and directions have been achieved. Looking at this point, we have described here the basic principles of catalyst design from self‐supported MOF, structural and interface engineering by controlling the electronic structure of the catalysts to improve the water splitting activity. In addition, the challenges and difficulties associated with this field have been pointed out and addressed for the future progress in this field.  相似文献   

5.
6.
Hydrogen energy is considered as one of the ideal clean energies for solving the energy shortage and environmental issues, and developing highly efficient electrocatalysts for overall water splitting to produce hydrogen is still a huge challenge. Herein, for the first time, Ru-doped Cu2+1O vertically arranged nanotube arrays in situ grown on Cu foam (Ru/Cu2+1O NT/CuF) are reported and further investigated for their catalytic properties for overall water splitting. The Ru/Cu2+1O NT/CuF presents ultrahigh catalytic activities for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline conditions, and it exhibits a small overpotential of 32 mV at 10 mA cm−2 in the HER, and only needs 210 mV overpotential to achieve a current density of 10 mA cm−2 in the OER. Importantly, the alkaline electrolyzer using Ru/Cu2+1O NT/CuF as a bifunctional electrocatalyst only needs 1.53 V voltage to deliver a current density of 10 mA cm−2, which is much lower than the benchmark of IrO2(+)/Pt(−) counterpart (1.64 V at 10 mA cm−2). The excellent performance of the Ru/Cu2+1O NT/CuF catalyst is attributed to its high conductive substrate and special Ru-doped nanotube structure, which provides a high electrochemical active surface area and 3D gas diffusion channel.  相似文献   

7.
Electrocatalytic water splitting to produce hydrogen and oxygen is regarded as one of the most promising methods to generate clean and sustainable energy for replacing fossil fuels. However, the design and development of an efficient bifunctional catalyst for simultaneous generation of hydrogen and oxygen remains extremely challenging yet is critical for the practical implementation of water electrolysis. Here, we report a facile method to fabricate novel N‐doped carbon nanotube frameworks (NCNTFs) by the pyrolysis of a bimetallic metal organic framework (MIL‐88‐Fe/Co). The resultant electrocatalyst, Co3Fe7@NCNTFs, exhibits excellent oxygen evolution reaction (OER) activity, achieving 10 mA/cm2 at a low overpotential of just 264 mV in 1 M KOH solution, and 197 mV for the hydrogen evolution reaction. The high electrocatalytic activity arises from the synergistic effect between the chemistry of the Co3Fe7 and the NCNTs coupled to the novel framework structure. The remarkable electrocatalytic performance of our bifunctional electrocatalyst provides a promising pathway to high‐performance overall water splitting and electrochemical energy devices.  相似文献   

8.
A bottom‐up synthetic approach was developed for the preparation of mesoporous transition‐metal‐oxide/noble‐metal hybrid catalysts through ligand‐assisted co‐assembly of amphiphilic block‐copolymer micelles and polymer‐tethered noble‐metal nanoparticles (NPs). The synthetic approach offers a general and straightforward method to precisely tune the sizes and loadings of noble‐metal NPs in metal oxides. This system thus provides a solid platform to clearly understand the role of noble‐metal NPs in photochemical water splitting. The presence of trace amounts of metal NPs (≈0.1 wt %) can enhance the photocatalytic activity for water splitting up to a factor of four. The findings can conceivably be applied to other semiconductors/noble‐metal catalysts, which may stand out as a new methodology to build highly efficient solar energy conversion systems.  相似文献   

9.
With the environmental pollution and non‐renewable fossil fuels, it is imperative to develop eco‐friendly, renewable, and highly efficient electrocatalysts for sustainable energy. Herein, a simple electrospinning process used to synthesis Mo2C‐embedded multichannel hollow carbon nanofibers (Mo2C‐MCNFs) and followed by the pyrolysis process. As prepared lotus root‐like nanoarchitecture could offer rich porosity and facilitate the electrolyte infiltration, the Mo2C‐MCNFs delivered favourable catalytic activity for HER and OER. The resultant catalysts exhibit low overpotentials of 114 mV and 320 mV at a current density of 10 mA cm?2 for HER and OER, respectively. Furthermore, using the Mo2C‐MCNFs catalysts as a bifunctional electrode toward overall water splitting, which only needs a small cell voltage of 1.68 V to afford a current density of 10 mA cm?2 in the home‐made alkaline electrolyzer. This interesting work presents a simple and effective strategy to further fabricating tunable nanostructures for energy‐related applications.  相似文献   

10.
Bifunctional electrocatalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline electrolyte may improve the efficiency of overall water splitting. Nickel cobaltite (NiCo2O4) has been considered a promising electrode material for the OER. However, NiCo2O4 that can be used as an electrocatalyst in HER has not been studied yet. Herein, we report self‐assembled hierarchical NiCo2O4 hollow microcuboids for overall water splitting including both the HER and OER reactions. The NiCo2O4 electrode shows excellent activity toward overall water splitting, with 10 mA cm?2 water‐splitting current reached by applying just 1.65 V and 20 mA cm?2 by applying just 1.74 V across the two electrodes. The synthesis of NiCo2O4 microflowers confirms the importance of structural features for high‐performance overall water splitting.  相似文献   

11.
Electrocatalysts play a pivotal role in accelerating the sluggish electrochemical water splitting reaction. Herein, a Ru−Co oxides and carbon nitrides hybrid (RuCoOx/NC) electrocatalyst was constructed by employing ZIF-9 to disperse Ru precursor and deliberately regulating the calcination temperature. The moderate calcination temperature results in the RuCoOx nanocomposites with small particle size and low crystallinity as well as the co-existence of multi-valence metal compounds, thus boosting the amount and species of active sites. Moreover, the strong interactions between Co and Ru species induce the electron transfer from Co to Ru, thus enhancing the adsorption of anion intermediates on the electron-deficient Co species and the proton capturing capacity of electron-sufficient Ru species. As a result, the optimized RuCoOx/NC-350 catalyst behaved good electrocatalytic activities with 73 and 210 mV overpotential to achieve 10 mA cm−2 for HER and OER, respectively. Remarkably, it showed good durability by holding at 100 mA cm−2 for 100 h in HER and 50 mA cm−2 for 24 h in OER with small activity decline. This study may shed new light on the rational construction of highly efficient Ru-based catalysts for electrochemical water splitting.  相似文献   

12.
Photocatalytic overall water splitting has been recognized as a promising approach to convert solar energy into hydrogen. However, most of the photocatalysts suffer from low efficiencies mainly because of poor charge separation. Herein, taking a model semiconductor gallium nitride (GaN) as an example, we uncovered that photogenerated electrons and holes can be spatially separated to the nonpolar and polar surfaces of GaN nanorod arrays, which is presumably ascribed to the different surface band bending induced by the surface polarity. The photogenerated charge separation efficiency of GaN can be enhanced significantly from about 8 % to more than 80 % via co‐exposing polar and nonpolar surfaces. Furthermore, spatially assembling reduction and oxidation cocatalysts on the nonpolar and polar surfaces remarkably boosts photocatalytic overall water splitting, with the quantum efficiency increased from 0.9 % for the film photocatalyst to 6.9 % for the nanorod arrays photocatalyst.  相似文献   

13.
To rationally design efficient and cost‐effective electrocatalysts, a simple but efficient strategy has been developed to directly anchor prussian blue analogue (PBA) nanocubes on cobalt hydroxide nanoplates (PBA@Co(OH)2) via the in‐situ interfacial precipitation process. Subsequently, the thermal treatment in the presence of sodium hydrogen phosphite enabled the successful transition into metal phosphides with the hierarchical cube‐on‐plate structure. When used as electrocatalytsts, the obtained bimetal phosphides exhibited good bifunctional electrocatalytic activities for hydrogen and oxygen evolution reactions with good long‐term stability. Thus, an enhanced performance for overall water splitting can be achieved, which could be ascribed to the hierarchical structure and favorable composition of as‐prepared bimetal phosphide for rapid electron and mass transfer. The present study demonstrates a favorable approach to modulate the composition and structure of metal phosphide for enhancing the electrocatalytic ability toward water splitting.  相似文献   

14.
Pyrolysis of a bimetallic metal–organic framework (MIL‐88‐Fe/Ni)‐dicyandiamide composite yield a Fe and Ni containing carbonaceous material, which is an efficient bifunctional electrocatalyst for overall water splitting. FeNi3 and NiFe2O4 are found as metallic and metal oxide compounds closely embedded in an N‐doped carbon–carbon nanotube matrix. This hybrid catalyst (Fe‐Ni@NC‐CNTs) significantly promotes the charge transfer efficiency and restrains the corrosion of the metallic catalysts, which is shown in a high OER and HER activity with an overpotential of 274 and 202 mV, respectively at 10 mA cm?2 in alkaline solution. When this bifunctional catalyst was further used for H2 and O2 production in an electrochemical water‐splitting unit, it can operate in ambient conditions with a competitive gas production rate of 1.15 and 0.57 μL s?1 for hydrogen and oxygen, respectively, showing its potential for practical applications.  相似文献   

15.
通过简单的钴铁前躯体热分解法制备了系列一维Co1-xFexOy(0≤x≤1)多孔纳米材料,并在1 mol·L-1 KOH溶液中研究了其电解水析氧催化性能。研究发现不同Fe掺杂量对材料的结构与电解水析氧催化性能有较大的影响,其中16%(n/n)Fe掺杂量的Co1-xFexOy具有最优的析氧催化性能。在10 mA·cm-2电流密度下其析氧过电位为345 mV,塔菲尔斜率为54 mV·dec-1,并表现出优异的析氧稳定性能。廉价、高效的Co1-xFexOy多孔纳米棒材料有望成为优良的析氧催化剂用于电解水制氢。  相似文献   

16.
通过简单的钴铁前躯体热分解法制备了系列一维Co_(1-x)Fe_xO_y(0≤x≤1)多孔纳米材料,并在1 mol·L~(-1) KOH溶液中研究了其电解水析氧催化性能。研究发现不同Fe掺杂量对材料的结构与电解水析氧催化性能有较大的影响,其中16%(n/n)Fe掺杂量的Co_(1-x)Fe_xO_y具有最优的析氧催化性能。在10 m A·cm~(-2)电流密度下其析氧过电位为345 mV,塔菲尔斜率为54 mV·dec~(-1),并表现出优异的析氧稳定性能。廉价、高效的Co_(1-x)Fe_xO_y多孔纳米棒材料有望成为优良的析氧催化剂用于电解水制氢。  相似文献   

17.
Electrochemical water splitting can provide a promising avenue for sustainable hydrogen production. Highly efficient electrocatalysts toward the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are extremely important for the practical application of water splitting technology. Herein, a one-step annealing strategy is reported for the fabrication of a metal–organic framework-derived bifunctional self-supported electrocatalyst, which is composed of two-dimensional N-doped carbon-wrapped Ir-doped Ni nanoparticle composites supported on Ni foam (NiIr@N-C/NF). The resultant NiIr@N-C/NF displays excellent electrocatalytic performance in 1.0 m KOH, with low overpotentials of 32 mV at 10 mA cm−2 for the HER and 329 mV at 50 mA cm−2 for the OER. Particularly, the HER-OER bifunctional NiIr@N-C/NF needs only 1.50 V to yield 10 mA cm−2 for overall water splitting.  相似文献   

18.
The cobalt–seleno-based coordination complex, [Co{(SePiPr2)2N}2], is reported with respect to its catalytic activity in oxygen evolution and hydrogen evolution reactions (OER and HER, respectively) in alkaline solutions. An overpotential of 320 and 630 mV was required to achieve 10 mA cm−2 for OER and HER, respectively. The overpotential for OER of this CoSe4-containing complex is one of the lowest that has been observed until now for molecular cobalt(II) systems, under the reported conditions. In addition, this cobalt–seleno-based complex exhibits a high mass activity (14.15 A g−1) and a much higher turn-over frequency (TOF) value (0.032 s−1) at an overpotential of 300 mV. These observations confirm analogous ones already reported in the literature pertaining to the potential of molecular cobalt–seleno systems as efficient OER electrocatalysts.  相似文献   

19.
An (oxy)nitride‐based heterostructure for powdered Z‐scheme overall water splitting is presented. Compared with the single MgTa2O6?xNy or TaON photocatalyst, a MgTa2O6?xNy /TaON heterostructure fabricated by a simple one‐pot nitridation route was demonstrated to effectively suppress the recombination of carriers by efficient spatial charge separation and decreased defect density. By employing Pt‐loaded MgTa2O6?xNy /TaON as a H2‐evolving photocatalyst, a Z‐scheme overall water splitting system with an apparent quantum efficiency (AQE) of 6.8 % at 420 nm was constructed (PtOx‐WO3 and IO3?/I? pairs were used as an O2‐evolving photocatalyst and a redox mediator, respectively), the activity of which is circa 7 or 360 times of that using Pt‐TaON or Pt‐MgTa2O6?xNy as a H2‐evolving photocatalyst, respectively. To the best of our knowledge, this is the highest AQE among the powdered Z‐scheme overall water splitting systems ever reported.  相似文献   

20.
The Z-scheme overall solar water splitting is a mimic of natural photosynthesis to convert solar energy into chemical energy. Since the energy levels of most organic semiconductors match well with the hydrogen evolution potential, they have great application prospects as photocathodes in Z-scheme photoelectrochemical systems. However, due to the weak light absorption and difficult carrier separation, the photocurrent density and onset potential of organic photocathodes are still low. To solve these problems, we introduced a copper nanosheets array (Cu NSA) framework under organic layers to increase the surface reaction sites, improve the light absorption and enhance the distribution range of built-in electric field simultaneously. As a result, the photocurrent density and onset potential of poly(3-hexylthiophene) : [6,6]-phenyl-C61-butyric acid (P3HT : PCBM) photocathode were enhanced significantly. The onset potential increased by 50 mV to 0.65 V vs. RHE, and the photocurrent density reached −1 mA cm−2 at 0 V vs. RHE, which was 18 times that of the sample without Cu NSA. The optimized photocathode was connected with titanium dioxide nanorods array photoanode in a tandem manner to realize the spontaneous overall water splitting. Without bias and co-catalyst, the photocurrent density was maintained at 110 μA cm−2 and the solar-to-fuel conversion efficiency was 0.14 % in neutral solution. These results provide a feasible method for optimizing the performance of organic photocathodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号