首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the field of chiral Brønsted base catalysis, a new generation of chiral catalysts has been highly anticipated to overcome the intrinsic limitation of pronucleophiles that are applicable to the enantioselective reactions. Herein, we reveal conceptually new chiral Brønsted base catalysts consisting of two different organobase functionalities, one of which functions as an organosuperbase and the other as the substrate recognition site. Their prominent activity, which stems from the distinctive cooperative function by the two organobases in a single catalyst molecule, was demonstrated in the unprecedented enantioselective direct Mannich‐type reaction of α‐phenylthioacetate as a less acidic pronucleophile. The present achievement would provide a new guiding principle for the design and development of chiral Brønsted base catalysts and significantly broaden the utility of Brønsted base catalysis in asymmetric organic synthesis.  相似文献   

2.
A cooperative catalytic system established by the combination of an iron salt and a chiral Brønsted acid has proven to be effective in the asymmetric Friedel–Crafts alkylation of indoles with β‐aryl α′‐hydroxy enones. Good to excellent yields and enatioselectivities were observed for a variety of α′‐hydroxy enones and indoles, particularly for the β‐aryl α′‐hydroxy enones bearing an electron‐withdrawing group at the para position of the phenyl ring (up to 90 % yield and 91 % ee). The proton of the chiral Brønsted acid, the Lewis acid activation site, as well as the inherent basic site for the hydrogen‐bonding interaction of the Brønsted acid are responsible for the high catalytic activities and enantioselectivities of the title reaction. A possible reaction mechanism was proposed. The key catalytic species in the catalytic system, the phosphate salt of FeIII, which was thought to be responsible for the high activity and good enantioselectivity, was then confirmed by ESIMS studies.  相似文献   

3.
A new multicomponent coupling reaction for the enantioselective synthesis of pyrrolo[1,2‐a]indoles under the catalysis of a chiral disulfonimide is described. The high specificity of the reaction is a consequence of the multidentate character of the Brønsted acid catalyst. Insights from DFT calculations helped explain the unexpected high enantioselectivity observed with the simplest 3,3′‐unsubstituted binaphthyl catalyst as a result of transition‐state stabilization by a network of cooperative noncovalent interactions. The remarkable enantioinversion resulting from the simple introduction of substituents at 3‐ and 3′‐positions, the first reported example of this phenomenon in the context of binaphthalene‐derived Brønsted acid catalysis, was instead attributed to destabilizing steric interactions.  相似文献   

4.
"Designer acids": combined acid catalysis for asymmetric synthesis   总被引:1,自引:0,他引:1  
Lewis and Brønsted acids can be utilized as more‐effective tools for chemical reactions by sophisticated engineering (“designer acids”). The ultimate goal of such “designer acids” is to form a combination of acids with higher reactivity, selectivity, and versatility than the individual acid catalysts. One possible way to take advantage of such abilities may be to apply a “combined acids system” to the catalyst design. The concept of combined acids, which can be classified into Brønsted acid assisted Lewis acid (BLA), Lewis acid assisted Lewis acid (LLA), Lewis acid assisted Brønsted acid (LBA), and Brønsted acid assisted Brønsted acid (BBA), can be a particularly useful tool for the design of asymmetric catalysis, because combining such acids will bring out their inherent reactivity by associative interaction, and also provide more‐organized structures that allow an effective asymmetric environment.  相似文献   

5.
A rare example of a one‐pot process that involves asymmetric triple relay catalysis is reported. The key step is an asymmetric [1,5] electrocyclic reaction of functionalized ketimines. The substrates for this process were obtained in situ in a two‐step process that involved the hydrogenation of nitroarenes with a Pd/C catalyst to yield aryl amines and their subsequent coupling with isatin derivatives in a Brønsted acid catalyzed ketimine formation reaction. The electrocyclization was catalyzed by a bifunctional chiral Brønsted base/hydrogen bond donor catalyst. The one‐pot process gave the desired products in good yields and with excellent enantioselectivity.  相似文献   

6.
Racemic cyclopropyl ketones undergo enantioselective rearrangement to deliver the corresponding dihydrofurans in the presence of a chiral phosphoric acid as the catalyst. The reaction involves activation of the donor‐acceptor cyclopropane substrate by the chiral Brønsted acid catalyst to promote the ring‐opening event, thus generating a carbocationic intermediate that subsequently undergoes cyclization. Computational studies and control experiments support this mechanistic pathway.  相似文献   

7.
A Brønsted acid‐catalyzed asymmetric Nazarov cyclization of acyclic α‐alkoxy dienones has been developed. The reaction offers access to chiral cyclopentenones in a highly enantioselective manner. The reaction is complementary to our previously reported Brønsted acid‐catalyzed electrocyclization reactions, which provided differently substituted optically active cyclopentenones with a fused tetrahydropyrane ring in good yields and with excellent enantioselectivities.  相似文献   

8.
A new means to activate diazoalkanes has been discovered and applied broadly over the past few years. Brønsted acids, both achiral and chiral, have been used to promote the formation of carbon–carbon and carbon–heteroatom bonds with a growing number of diazoalkane derivatives. Aside from their straightforward ability to build structural and stereochemical complexity in innovative new ways, these transformations are remarkable owing to their ability to skirt competitive diazo protonation—a reaction that has long been used to prepare esters efficiently and cleanly from carboxylic acids. In cases where achiral Brønsted acids are used, high diastereoselection can be achieved. Meanwhile, chiral Brønsted acids can deliver products with both high diastereo‐ and enantioselectivity. More recently, systems have emerged that combine Brønsted acids and either Lewis acids or transition metals to promote carbon–carbon bond formation from diazoalkanes.  相似文献   

9.
An asymmetric unactivated alkene/C? H bond difunctionalization reaction for the concomitant construction of C? CF3 and C? O bonds was realized by using a Cu/Brønsted acid cooperative catalytic system, thus providing facile access to valuable chiral CF3‐containing N,O‐aminals with excellent regio‐, chemo‐, and enantioselectivity. Mechanistic studies revealed that this reaction may proceed by an unprecedented 1,5‐hydride shift involving activation of unactivated alkenes and a radical trifluoromethylation to initiate subsequent enantioselective functionalization of C? H bonds. Control experiments also suggested that chiral Brønsted acid plays multiple roles and not only controls the stereoselectivity but also increases the reaction rate through activation of Togni’s reagent.  相似文献   

10.
Chiral Brønsted base catalysis is a fascinating and highly explored field of research. For many years catalysts based on chincona alkaloid chiral scaffolds have constituted privileged systems widely employed in numerous base‐promoted organic transformations. Recently, a novel group of chiral base catalysts has been successfully introduced. The application of organosuperbases, namely cyclopropenimines, guanidines, and iminophosphoranes, as chiral catalysts is receiving increasing attention. The aim of this Concept article is to summarize recent progress in the field of chiral iminophosphorane superbase organocatalysis. Catalysts design, different approaches to their synthesis, and applications in asymmetric synthesis are outlined and discussed in detail.  相似文献   

11.
An asymmetric unactivated alkene/C H bond difunctionalization reaction for the concomitant construction of C CF3 and C O bonds was realized by using a Cu/Brønsted acid cooperative catalytic system, thus providing facile access to valuable chiral CF3‐containing N,O‐aminals with excellent regio‐, chemo‐, and enantioselectivity. Mechanistic studies revealed that this reaction may proceed by an unprecedented 1,5‐hydride shift involving activation of unactivated alkenes and a radical trifluoromethylation to initiate subsequent enantioselective functionalization of C H bonds. Control experiments also suggested that chiral Brønsted acid plays multiple roles and not only controls the stereoselectivity but also increases the reaction rate through activation of Togni’s reagent.  相似文献   

12.
Optically active vicinal diamines are versatile chiral building blocks in organic synthesis. A soft Lewis acid/hard Brønsted base cooperative catalyst allows for an efficient stereoselective coupling of N‐alkylidene‐α‐aminoacetonitrile and ketimines to access this class of compounds bearing consecutive tetra‐ and trisubstituted stereogenic centers. The strategic use of a soft Lewis basic thiophosphinoyl group for ketimines is the key to promoting the reaction, and aliphatic ketimines serve as suitable substrates with as little as 3 mol % catalyst loading.  相似文献   

13.
An enantioselective direct Mannich‐type reaction catalyzed by a sterically frustrated Lewis acid/Brønsted base complex is disclosed. Cooperative functioning of the chiral Lewis acid and achiral Brønsted base components gives rise to in situ enolate generation from monocarbonyl compounds. Subsequent reaction with hydrogen‐bond‐activated aldimines delivers β‐aminocarbonyl compounds with high enantiomeric purity.  相似文献   

14.
An enantioselective sulfenylation/semipinacol rearrangement of 1,1‐disubstituted and trisubstituted allylic alcohols was accomplished with a chiral Lewis base and a chiral Brønsted acid as cocatalysts, generating various β‐arylthio ketones bearing an all‐carbon quaternary center in moderate to excellent yields and excellent enantioselectivities. These chiral arylthio ketone products are common intermediates with many applications, for example, in the design of new chiral catalysts/ligands and the total synthesis of natural products. Computational studies (DFT calculations) were carried out to explain the enantioselectivity and the role of the chiral Brønsted acid. Additionally, the synthetic utility of this method was exemplified by an enantioselective total synthesis of (?)‐herbertene and a one‐pot synthesis of a chiral sulfoxide and sulfone.  相似文献   

15.
A new chiral Brønsted acid, generated in situ from a chiral phosphoric acid boron (CPAB) complex and water, was successfully applied to asymmetric indole reduction. This “designer acid catalyst”, which is more acidic than TsOH as suggested by DFT calculations, allows the unprecedented direct asymmetric reduction of C2‐aryl‐substituted N‐unprotected indoles and features good to excellent enantioselectivities with broad functional group tolerance. DFT calculations and mechanistic experiments indicates that this reaction undergoes C3‐protonation and hydride‐transfer processes. Besides, bulky C2‐alkyl‐substituted N‐unprotected indoles are also suitable for this system.  相似文献   

16.
Under control of a chiral Brønsted acid catalyst, racemic indolines undergo intramolecular Povarov reactions with achiral aromatic aldehydes bearing a pendent dienophile. One enantiomer of the indoline reacts preferentially, resulting in the highly enantio‐ and diastereoselective formation of polycyclic heterocycles with four stereogenic centers. This kinetic resolution approach exploits the differential formation/reactivity of diastereomeric ion pairs.  相似文献   

17.
The development and use of a multiple-activation catalyst with ion-paired Lewis acid and Brønsted acid in an asymmetric aza-Diels–Alder reaction of simple dienes (non-Danishefsky-type electron-rich dienes) was achieved by utilizing the [FeBr2]+[FeBr4] combination prepared in situ from FeBr3 and chiral phosphoric acid. Synergistic effects of the highly active ion-paired Lewis acid [FeBr2]+[FeBr4] and a chiral Brønsted acid are important for promoting the reaction with high turnover frequency and high enantioselectivity. The multiple-activation catalyst system was confirmed using synchrotron-based X-ray absorption fine structure measurements, and theoretical studies. This study reveals that the developed catalyst promoted the reaction not only by the interaction offered by the ion-paired Lewis acid and the Brønsted acid but also noncovalent interactions.  相似文献   

18.
《中国化学》2017,35(10):1529-1539
A series of mesoporous Nb and Nb‐W oxides were employed as highly active solid acid catalysts for the conversion of glucose to 5‐hydroxymethylfurfural (HMF ). The results of solid state 31P MAS NMR spectroscopy with adsorbed trimethylphosphine as probe molecule show that the addition of W in niobium oxide increases the number of Brønsted acid sites and decreases the number of Lewis acid sites. The catalytic performance for Nb‐W oxides varied with the ratio of Brønsted to Lewis acid sites and high glucose conversion was observed over Nb5W5 and Nb7W3 oxides with high ratios of Brønsted to Lewis acid sites. All Nb‐W oxides show a relatively high selectivity of HMF , whereas no HMF forms over sulfuric acid due to its pure Brønsted acidity. The results indicate fast isomerization of glucose to fructose over Lewis acid sites followed by dehydration of fructose to HMF over Brønsted acid sites. Moreover, comparing to the reaction occurred in aqueous media, the 2‐butanol/H2O system enhances the HMF selectivity and stabilizes the activity of the catalysts which gives the highest HMF selectivity of 52% over Nb7W3 oxide. The 2‐butanol/H2O catalytic system can also be employed in conversion of sucrose, achieving HMF selectivity of 46% over Nb5W5 oxide.  相似文献   

19.
Metal-reinforced sulfonic-acid-modified zirconia catalysts were successfully prepared and used to remove trace olefins from aromatics in a fixed-bed reactor. Catalysts were characterized by ICP-OES, N2 adsorption–desorption, X-ray diffraction, thermogravimetric analysis (TGA), and pyridine-FTIR spectroscopy. Different metals and calcination temperatures had great influence on the catalytic activity. Alumina-reinforced sulfated zirconia exhibited outstanding catalytic performance, stable regeneration activity, and giant surface area, and are promising in industrial catalysis. TGA showed that the decomposition of methyl could be attributed to Brønsted acid sites, and pyridine-FTIR spectroscopy proved the weak Brønsted sites on these synthesized metal-reinforced sulfated zirconia. Also, a relation between the reaction rate and weak Brønsted acid density is proposed.  相似文献   

20.
The reaction of indoles and stabilized cyclopropyl alkynes under gold‐ and/or gold & Brønsted acid‐catalysis provided access to highly substituted tetrahydrocarbazoles. A mechanistic study revealed the complex mechanism underlying these processes and the opportunistic cooperation of Lewis and Brønsted acid‐catalysts towards the formation of complex molecular scaffolds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号