首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of methods to detect damage in macromolecular materials is of paramount importance to understand their mechanical failure and the structure–property relationships of polymers. Mechanofluorophores are useful and sensitive molecular motifs for this purpose. However, to date, tailoring of their optical properties remains challenging and correlating emission intensity to force induced material damage and the respective events on the molecular level is complicated by intrinsic limitations of fluorescence and its detection techniques. Now, this is tackled by developing the first stress‐sensing motif that relies on photon upconversion. By combining the Diels–Alder adduct of a π‐extended anthracene with the porphyrin‐based triplet sensitizer PtOEP in polymers, triplet–triplet annihilation photon upconversion of green to blue light is mechanochemically activated in solution as well as in the solid state.  相似文献   

2.
The addition of stimuli‐responsiveness to anti‐Stokes emission provides a unique platform for biosensing and chemosensing. Particularly, stimuli‐responsive photon upconversion based on triplet–triplet annihilation (TTA‐UC) is promising due to its occurrence at low excitation intensity with high efficiency. This Minireview summarizes the recent developments of TTA‐UC switching by external stimuli such as temperature, oxygen, chemicals, light, electric field, and mechanical force. For the systematic understanding of the underlying general mechanisms, the switching mechanisms are categorized into four types: 1) aggregation‐induced UC; 2) assembly‐induced air‐stable UC; 3) diffusion‐controlled UC; and 4) energy‐transfer‐controlled UC. The development of stimuli‐responsive smart TTA‐UC systems would enable sensing with unprecedented sensitivity and selectivity, and expand the scope of TTA‐UC photochemistry by combination with supramolecular chemistry, materials chemistry, mechanochemistry, and biochemistry.  相似文献   

3.
4.
A new family of surface‐functionalized CdSe/ZnS core‐shell quantum dots (csQD) has been developed, which work as triplet sensitizers for triplet‐triplet annihilation‐based photon upconversion (TTA‐UC). The surface modification of csQD with acceptor molecules plays a key role in the efficient relay of the excited energy of csQD to emitter molecules in the bulk solution, where the generated emitter triplets undergo triplet‐triplet annihilation that leads to photon upconversion. Interestingly, improved UC properties were achieved with the core‐shell QDs compared with core‐only CdSe QDs (cQD). The threshold excitation intensity, which is defined as the necessary irradiance to achieve efficient TTA process, decreases by more than a factor of four. Furthermore, the total UC quantum yield is enhanced more than 50‐fold. These enhancements should be derived from better optical properties of csQD, in which the non‐radiative surface recombination sites are passivated by the shell layer with wider bandgap.  相似文献   

5.
For real‐world applications of photon upconversion based on the triplet–triplet annihilation (TTA‐UC), it is imperative to develop solid‐state TTA‐UC systems that work effectively under low excitation power comparable to solar irradiance. As an approach in this direction, aromatic crystals showing high triplet diffusivity are expected to serve as a useful platform. However, donor molecules inevitably tend to segregate from the host acceptor crystals, and this inhomogeneity results in the disappointing performance of crystalline state TTA‐UC. In this work, a series of cast‐film‐forming acceptors was developed, which provide both regular acceptor alignment and soft domains of alkyl chains that accommodate donor molecules without segregation. A typical triplet sensitizer, PtII octaethylporphyrin (PtOEP), was dispersed in these acceptor crystals without aggregation. As a result, efficient triplet energy transfer from the donor to the acceptor and diffusion of triplet excitons among regularly aligned anthracene chromophores occurred. It resulted in TTA‐UC emission at low excitation intensities, comparable to solar irradiance.  相似文献   

6.
A common challenge in chemistry that deals with photoexcited states is to avoid oxygen quenching. This is crucial for hot research fields such as photon upconversion (UC), in which oxygen-sensitive triplet excited states play pivotal roles. However, methods to avoid oxygen quenching in aqueous media are far more limited despite eagerly anticipated catalytic and biological applications. This work introduces a simple strategy to achieve air-stable triplet–triplet annihilation (TTA)-based UC in water, namely, supramolecular crowding. Amphiphilic cationic acceptor molecules and anions with long alkyl chains co-assemble in water in which hydrophobic donor molecules are molecularly dispersed. Despite the common notion that oxygen molecules diffuse readily across hydrophobic domains in water, more than 80 % of the TTA-UC emission of the obtained hydrophobic co-assemblies is maintained in air-saturated water. This work demonstrates the new promising potential of supramolecular chemistry for photophysical and photochemical functions with oxygen-sensitive species.  相似文献   

7.
While many studies have been done on triplet–triplet annihilation‐based photon upconversion (TTA‐UC) to produce visible light with high efficiency, the efficient TTA‐UC from visible to UV light, despite its importance for a variety of solar and indoor applications, remains a challenging task. Here, we report the highest visible‐to‐UV TTA‐UC efficiency of 20.5 % based on the discovery of an excellent UV emitter, 1,4‐bis((triisopropylsilyl)ethynyl)naphthalene (TIPS‐Nph). TIPS‐Nph is an acceptor with desirable features of high fluorescence quantum yield and high singlet generation efficiency by TTA. TIPS‐Nph has a low enough triplet energy level to be sensitized by Ir(C6)2(acac), a superior donor that does not quench UV emission. The combination of TIPS‐Nph and Ir(C6)2(acac) realizes the efficient UV light production even with weak light sources such as an AM 1.5 solar simulator and room LEDs.  相似文献   

8.
9.
10.
A novel conjugated asymmetric donor–acceptor (CADA) strategy for preventing the redshift in photoluminescence, as well as preserving the merits of donor–acceptor architectures, was proposed and demonstrated for two triazine derivatives, which showed highly efficient, narrow, and blueshifted ultraviolet light emission in solid films along with special aggregation‐induced emission behavior. A mechanism of aggregation‐induced locally excited‐state emission by suppressing the twisted intramolecular charge‐transfer emission for the spectacular optoelectronic phenomena of these CADA molecules was suggested on the basis of both experimental measurements and theoretical calculations. By taking advantage of this special CADA architecture, fluorescent probes based on aggregates of conjugated asymmetric triazines in THF/water for the detection of explosives show superamplified detection of picric acid with high quenching constants (>1.0×107 M ?1) and a low detection limit of 15 ppb.  相似文献   

11.
Molecular self‐assembly is a powerful means to construct nanoscale materials with advanced photophysical properties. Although the protection of the photo‐excited states from oxygen quenching is a critical issue, it still has been in an early phase of development. In this work, we demonstrate that a simple and typical molecular design for aqueous supramolecular assembly, modification of the chromophoric unit with hydrophilic oligo(ethylene glycol) chains and hydrophobic alkyl chains, is effective to avoid oxygen quenching of triplet–triplet annihilation‐based photon upconversion (TTA‐UC). While a TTA‐UC emission is completely quenched when the donor and acceptor are molecularly dispersed in chloroform, their aqueous co‐assemblies exhibit a clear upconverted emission in air‐saturated water even under extremely low chromophore concentrations down to 40 μm . The generalization of this nano‐encapsulation approach offers new functions and applications using oxygen‐sensitive species for supramolecular chemistry.  相似文献   

12.
One‐dimensional nanostructures with aggregation‐induced emission (AIE) properties have been fabricated to keep the pace with growing demand from optoelectronics applications. The compounds 2‐[4‐(4‐methylpiperazin‐1‐yl)benzylidene]malononitrile ( PM1 ), 2‐{4‐[4‐(pyridin‐2‐yl)piperazin‐1‐yl]‐benzylidene}malononitrile ( PM2 ), and 2‐{4‐[4‐(pyrimidin‐2‐yl)piperazin‐1‐yl]benzylidene}malononitrile ( PM3 ) have been designed and synthesized by melding piperazine and dicyanovinylene to investigate AIE in an asymmetric donor–acceptor (D–A) construct of A′–D–π–A‐ topology. The synthetic route has been simplified by using phenylpiperazine as a weak donor (D), dicyanovinylene as an acceptor (A), and pyridyl/pyrimidyl groups ( PM2/PM3 ) as auxiliary acceptors (A′). It has been established that A′ plays a vital role in triggering AIE in these compounds because the same D–A construct led to aggregation‐caused quenching upon replacing A′ with an electron‐donating ethyl group ( PM1 ). Moreover, the effect of restricted intramolecular rotation and twisted intramolecular charge transfer on the mechanism of AIE has also been investigated. Furthermore, it has been clearly shown that the optical disparities of these A′–D–π–A architectures are a direct consequence of comparative A′ strength. Single‐crystal X‐ray analyses provided justification for role of intermolecular interactions in aggregate morphology. Electrochemical and theoretical studies affirmed the effect of the A′ strength on the overall properties of the A′–D–π–A system.  相似文献   

13.
A series of directly mesomeso‐linked Pd–porphyrin oligomers (PdDTP‐M, PdDTP‐D, and PdDTP‐T) have been prepared. The absorption region and the light‐harvesting ability of the Pd–porphyrin oligomers are broadened and enhanced by increasing the number of Pd–porphyrin units. Triplet–triplet annihilation upconversion (TTA‐UC) systems were constructed by utilizing the Pd–porphyrin oligomers as the sensitizer and 9,10‐diphenylanthracene (DPA) as the acceptor in deaerated toluene and green‐to‐blue photon upconversion was observed upon excitation with a 532 nm laser. The triplet–triplet annihilation upconversion quantum efficiencies were found to be 6.2 %, 10.5 %, and 1.6 % for the [PdDTP‐M]/DPA, [PdDTP‐D]/DPA, and [PdDTP‐T]/DPA systems, respectively, under an excitation power density of 500 mW cm?2. The photophysical processes of the TTA‐UC systems have been investigated in detail. The higher triplet–triplet annihilation upconversion quantum efficiency observed in the [PdDTP‐D]/DPA system can be rationalized by the enhanced light‐harvesting ability of PdDTP‐D at 532 nm. Under the same experimental conditions, the [PdDTP‐D]/DPA system produces more 3DPA* than the other two TTA‐UC systems, benefiting the triplet–triplet annihilation process. This work provides a useful way to develop efficient TTA‐UC systems with broad spectral response by using Pd–porphyrin oligomers as sensitizers.  相似文献   

14.
15.
We present results of steady‐state and transient photoluminescence studies of molecularly doped poly(fluorene) films. We study blends with increasing content of the triplet emitter (2,3,7,8,12,13,17,18‐octaethyl‐porphyrinato)PtII (PtOEP) when dispersed in the polymeric poly(fluorene) matrix of the poly[9,9‐di‐(2‐ethylhexyl)‐fluorenyl‐2,7‐diyl] (PF26) derivative. We carry out a unified study of the photophysical reactions that are involved in the energy transfer processes in this system by probing the three luminescence processes of a) PF26 fluorescence, b) triplet–triplet annihilation (TTA) induced up‐converted PF26 delayed fluorescence and c) PtOEP phosphorescence. With increasing PtOEP content, the process of photon energy recycling in the PF26:PtOEP system is manifested from the quenching of the TTA‐induced up‐converted PF26 delayed fluorescence and it is rationalized with the use of Forster theory of resonant energy transfer. Based on the combined results of the photophysical and the transmission electron microscopy characterization of the as‐spun PF26:PtOEP films, we determine the onset of PtOEP aggregation at 2–3 wt % PtOEP content. The analysis of the photophysical data is based on the use of modified Stern–Volmer photokinetic models that are appropriate for the solid state. A static component in the PL quenching of PF26 is revealed for PtOEP contents below 2 wt %. The modified Stern–Volmer kinetic scheme further suggests that co‐aggregation effects between PF26 and PtOEP are operative with an association constant of ground state complex formation kbind ~15–17 M ?1. The involvement of the ground state heterospecies in the TTA‐mediated PF26 up‐converted luminescence is discussed. The participation of an electron‐exchange step, in the excited state energy transfer pathway between PtOEP and PF26, is proposed for the activation mechanism of the PF26 up‐converted fluorescence.  相似文献   

16.
Reversible emission color switching of triplet–triplet annihilation‐based photon upconversion (TTA‐UC) is achieved by employing an Os complex sensitizer with singlet‐to‐triplet (S‐T) absorption and an asymmetric luminescent cyclophane with switchable emission characteristics. The cyclophane contains the 9,10‐bis(phenylethynyl)anthracene unit as an emitter and can assemble into two different structures, a stable crystalline phase and a metastable supercooled nematic phase. The two structures exhibit green and yellow fluorescence, respectively, and can be accessed by distinct heating/cooling sequences. The hybridization of the cyclophane with the Os complex allows near‐infrared‐to‐visible TTA‐UC. The large anti‐Stokes shift is possible by the direct S‐T excitation, which dispenses with the use of a conventional sequence of singlet–singlet absorption and intersystem crossing. The TTA‐UC emission color is successfully switched between green and yellow by thermal stimulation.  相似文献   

17.
“Chemistry‐on‐the‐complex” synthetic methods have allowed the selective addition of 1‐ethynylpyrene appendages to the 3‐, 5‐, 3,8‐ and 5,6‐positions of IrIII‐coordinated 1,10‐phenanthroline via Sonogashira cross‐coupling. The resulting suite of complexes has given rise to the first rationalization of their absorption and emission properties as a function of the number and position of the pyrene moieties. Strong absorption in the visible region (e.g. 3,8‐substituted Ir‐3 : λabs=481 nm, ?=52 400 m ?1 cm?1) and long‐lived triplet excited states (e.g. 5‐substituted Ir‐2 : τT=367.7 μs) were observed for the complexes in deaerated CH2Cl2. On testing the series as triplet sensitizers for triplet–triplet annihilation upconversion, those IrIII complexes bearing pyrenyl appendages at the 3‐ and 3,8‐positions ( Ir‐1 , Ir‐3 ) were found to give optimal upconversion quantum yields (30.2 % and 31.6 % respectively).  相似文献   

18.
19.
20.
Five new multi‐branched two‐photon absorption triazine chromophores ( T1 – T5 ) with different donor strength, conjugation length, and direction of charge transfer have been designed and synthesized. The one‐photon fluorescence, fluorescence quantum yields, and two‐photon properties have been investigated. The two‐photon absorption (2PA) cross sections measured by the open aperture Z‐scan technique were determined to be 447, 854, 1023, 603, and 766 GM for T1 , T2 , T3 , T4 , and T5 , respectively. This result indicates that their 2PA cross section values (σ) increase with increasing electron‐donating strength of the end group, extending the conjugation length of the system, and introducing electron‐withdrawing perfluoroalkyl as side groups to the end donor. In addition, the σ value of T5 is also larger than that of T1 , which provides evidence that the σ value is relative to the direction of charge transfer (from the ends to the center of the molecule or from the center to the ends). Moreover, significant enhancement of the two‐photon absorption cross section was achieved by introducing a thiophene moiety to a conjugated CC bond. At the same time, the optical limiting behavior for these chromophores was studied by using a focused 800 nm laser beam with pulses of 140 fs duration. It was found that these molecules also exhibit good optical limiting properties. These initial results clearly demonstrate that multi‐branched triazine chromophores are a highly suitable class of two‐photon absorbing materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号