首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
2.
Density functional theory calculations are reported on a set of models of the water‐oxidising complex (WOC) of photosystem II (PSII), exploring structural features revealed in the most recent (1.9 Å resolution) X‐ray crystallographic studies of PSII. Crucially, we find that the variation in the Mn–Mn distances seen between the A and B monomers of this crystal structure can be entirely accounted for, in the low oxidation state (LOS) paradigm, by consideration of the interplay between two hydrogen‐bonding interactions involving proximate amino acid residues with the oxo bridges of the WOC, that is, His337 with O3 (which leads to a general elongation in the Mn–Mn distances between Mn1, Mn2 and Mn3) and Arg357 with O2 (which results in a specific elongation of the Mn2?Mn3 distance).  相似文献   

3.
4.
A recent EPR study (M. Perrez Navarro et al., Proc. Natl. Acad. Sci.­ 2013 , 110, 15561) provided evidence that ammonia binding to the oxygen‐evolving complex (OEC) of photosystem II in its S2 state takes place at a terminal‐water binding position (W1) on the “dangler” manganese center MnA. This contradicted earlier interpretations of 14N electron‐spin‐echo envelope modulation (ESEEM) and extended X‐ray absorption fine‐structure (EXAFS) data, which were taken to indicate replacement of a bridging oxo ligand by an NH2 unit. Here we have used systematic broken‐symmetry density functional theory calculations on large (ca. 200 atom) model clusters of an extensive variety of substitution patterns and core geometries to examine these contradictory pieces of evidence. Computed relative energies clearly favor the terminal substitution pattern over bridging‐ligand arrangements (by about 20–30 kcal mol?1) and support W1 as the preferred binding site. Computed 14N EPR nuclear‐quadrupole coupling tensors confirm previous assumptions that the appreciable asymmetry may be accounted for by strong, asymmetric hydrogen bonding to the bound terminal NH3 ligand (mainly by Asp61). Indeed, bridging NH2 substitution would lead to exaggerated asymmetries. Although our computed structures confirm that the reported elongation of an Mn–Mn distance by about 0.15 Å inferred from EXAFS experiments may only be reproduced by bridging NH2 substitution, it seems possible that the underlying EXAFS data were skewed by problems due to radiation damage. Overall, the present data clearly support the suggested terminal NH3 coordination at the W1 site. The finding is significant for the proposed mechanistic scenarios of OEC catalysis, as this is not a water substrate site, and effects of this ammonia binding on catalysis thus must be due to more indirect influences on the likely substrate binding site at the O5 bridging‐oxygen position.  相似文献   

5.
6.
7.
8.
Three atomic resolution crystal structures of Photosystem II, in the double flashed, nominal S3 intermediate state of its Mn4Ca Water Oxidising Complex (WOC), have now been presented, at 2.25, 2.35 and 2.08 Å resolution. Although very similar overall, the S3 structures differ within the WOC catalytic site. The 2.25 Å structure contains only one oxy species (O5) in the WOC cavity, weakly associated with Mn centres, similar to that in the earlier 1.95 Å S1 structure. The 2.35 Å structure shows two such species (O5, O6), with the Mn centres and O5 positioned as in the 2.25 Å structure and O5−O6 separation of ∼1.5 Å. In the latest S3 variant, two oxy species are also seen (O5, Ox), with the Ox group appearing only in S3, closely ligating one Mn, with O5−Ox separation <2.1 Å. The O5 and O6/Ox groups were proposed to be substrate water derived species. Recently, Petrie et al. (Chem. Phys. Chem., 2017 ) presented large scale Quantum Chemical modelling of the 2.25 Å structure, quantitatively explaining all significant features within the WOC region. This, as in our earlier studies, assumed a ‘low’ Mn oxidation paradigm (mean S1 Mn oxidation level of +3.0, Petrie et al., Angew. Chem. Int. Ed., 2015 ), rather than a ‘high’ oxidation model (mean S1 oxidation level of +3.5). In 2018 we showed (Chem. Phys. Chem., 2018 ) this oxidation state assumption predicted two energetically close S3 structural forms, one with the metal centres and O5 (as OH) positioned as in the 2.25 Å structure, and the other with the metals similarly placed, but with O5 (as H2O) located in the O6 position of the 2.35 Å structure. The 2.35 Å two flashed structure was likely a crystal superposition of two such forms. Here we show, by similar computational analysis, that the latest 2.08 Å S3 structure is also a likely superposition of forms, but with O5 (as OH) occupying either the O5 or Ox positions in the WOC cavity. This highlights a remarkable structural ‘lability’ of the WOC centre in the S3 state, which is likely catalytically relevant to its water splitting function.  相似文献   

9.
10.
11.
A full account of our studies of 2,4,6‐trinitrophenol (TNP) sensing is provided. A series of chemosensors 2 , 3 , 4 , 5 with a variety of aromatic chromophores for specific recognition of TNP has been designed and then realized through the fluorescence “on/off” mechanism. These chemosensors demonstrated highly selective, sensitive, and fluorescent quenching of TNP with remarkable visual changes through the intramolecular charge‐transfer (ICT) process. Their host–guest interactions were investigated by 1H NMR spectroscopic titrations and their corresponding co‐crystal structures, which showed that the 1:1 host–guest complexes were formed by multiple hydrogen‐bond interactions in solution or in the solid state. The origins of the significant affinity demonstrated during the fluorescence recognition process were further disclosed through DFT calculations of corresponding compounds.  相似文献   

12.
In this work, density functional theory and time‐dependent density functional theory were used to investigate the effects of π‐conjugation of the ligand on the photophysical properties, radiative/nonradiative processes and phosphorescence quantum efficiency of tetradentate cyclometalated Pt (II) complex with carbazolyl‐pyridine ligands PtNON . By simulating the absorption spectra and emission wavelengths, increasing the π‐conjugation of the ligand could cause the absorption and emission wavelengths to red‐shift. The results of the computation of key parameters in the radiative decay process, such as singlet‐triplet splitting energy, transition dipole moment and spin‐coupled matrix element between the lowest triplet and singlet excited states, showed that the expansion of π‐conjugation on the carbazole ligand of PtNON resulted in reduction of these parameters, thereby reducing the radiation rate constant. The analyses of the PtNON nonradiative pathway also found that the high activation energy of PtNON made it one of the reasons for the high phosphorescence quantum yield. At the same time, enhancing the molecular orbital delocalization of the ligand further enlarged the energy barrier of the nonradiative pathway, and was conducive to the improvement of phosphorescence quantum yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号