首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interstrand DNA–DNA cross‐links are highly toxic to cells because these lesions block the extraction of information from the genetic material. The pathways by which cells repair cross‐links are important, but not well understood. The preparation of chemically well‐defined cross‐linked DNA substrates represents a significant challenge in the study of cross‐link repair. Here a simple method is reported that employs “post‐synthetic” modifications of commercially available 2′‐deoxyoligonucleotides to install a single cross‐link in high yield at a specified location within a DNA duplex. The cross‐linking process exploits the formation of a hydrazone between a non‐natural N4‐amino‐2′‐deoxycytidine nucleobase and the aldehyde residue of an abasic site in duplex DNA. The resulting cross‐link is stable under physiological conditions, but can be readily dissociated and re‐formed through heating–cooling cycles.  相似文献   

2.
The common nitrogen mustard, mechlorethamine, can form a covalent cross‐link between the two bases of a cytosine–cytosine mismatch pair within a DNA duplex. The cross‐linked species can be readily separated from DNA monoadducts and unreacted strands using denaturing polyacrylamide gel electrophoresis. Here, using DNA 19 mer duplexes that are mechlorethamine cross‐linked at a C4–C35, C7–C32, C10–C29, or C13–C26 mismatch pair, we show that the denaturing polyacrylamide gel electrophoresis mobility of the cross‐linked species is particularly sensitive to the proximity of the C–C cross‐link to the duplex end. Species that are cross‐linked at a C4–C35 mismatch have greater mobilities than those cross‐linked at C7–C32 or C13–C26, and the species with a central C10–C29 cross‐link have the lowest mobility. The mobility is also dependent on the proximity of the cross‐link to a 5′‐32P‐phosphate or a 5′‐fluorescein label. We interpret these results in terms of the conformational properties of the cross‐linked species in the denaturing gel. The results are consistent with the retention of partial duplex character at the end proximal to the cross‐link, with an influence on the mobility of the GC/AT ratio proximal to the cross‐link and at the duplex end, and a small but discernible effect of the label.  相似文献   

3.
Oligonucleotides tethered by an alkylene linkage between the O6‐atoms of two consecutive 2′‐deoxyguanosines, which lack a phosphodiester linkage between these residues, have been synthesized as a model system of intrastrand cross‐linked (IaCL) DNA. UV thermal denaturation studies of duplexes formed between these butylene‐ and heptylene‐linked oligonucleotides with their complementary DNA sequences revealed about 20 °C reduction in stability relative to the unmodified duplex. Circular dichroism spectra of the model IaCL duplexes displayed a signature characteristic of B‐form DNA, suggesting minimal global perturbations are induced by the lesion. The model IaCL containing duplexes were investigated as substrates of O6‐alkylguanine DNA alkyltransferase (AGT) proteins from human and E. coli (Ada‐C and OGT). Human AGT was found to repair both model IaCL duplexes with greater efficiency towards the heptylene versus butylene analog adding to our knowledge of substrates this protein can repair.  相似文献   

4.
8‐Phenylimidazolo‐dC (phImidC, 2 ) forms metal‐mediated DNA base pairs by entrapping two silver ions. To this end, the fluorescent “purine” 2′‐deoxyribonucleoside 2 has been synthesised and converted into the phosphoramidite 6 . Owing to the ease of nucleobase deprotonation, the new Ag+‐mediated base pair containing a “purine” skeleton is much stronger than that derived from the pyrrolo‐ [3,4‐d]pyrimidine system (phPyrdC, 1 ). The silver‐mediated phImidC–phImidC base pair fits well into the DNA double helix and has the stability of a covalent cross‐link. The formation of such artificial metal base pairs might not be limited to DNA but may be applicable to other nucleic acids such as RNA, PNA and GNA as well as other biopolymers.  相似文献   

5.
Reported herein is a study of the unusual 3′–3′ 1,4‐GG interstrand cross‐link (IXL) formation in duplex DNA by a series of polynuclear platinum anticancer complexes. To examine the effect of possible preassociation through charge and hydrogen‐bonding effects the closely related compounds [{trans‐PtCl(NH3)2}2(μ‐trans‐Pt(NH3)2{NH2(CH2)6NH2}2)]4+ (BBR3464, 1 ), [{trans‐PtCl(NH3)2}2(μ‐NH2(CH2)6NH2)]2+ (BBR3005, 2 ), [{trans‐PtCl(NH3)2}2(μ‐H2N(CH2)3NH2(CH2)4)]3+ (BBR3571, 3 ) and [{trans‐PtCl(NH3)2}2{μ‐H2N(CH2)3‐N(COCF3)(CH2)4}]2+ (BBR3571‐COCF3, 4 ) were studied. Two different molecular biology approaches were used to investigate the effect of DNA template upon IXL formation in synthetic 20‐base‐pair duplexes. In the “hybridisation directed” method the monofunctionally adducted top strands were hybridised with their complementary 5′‐end labelled strands; after 24 h the efficiency of interstrand cross‐linking in the 5′–5′ direction was slightly higher than in the 3′–3′ direction. The second method involved “postsynthetic modification” of the intact duplex; significantly less cross‐linking was observed, but again a slight preference for the 5′–5′ duplex was present. 2D [1H, 15N] HSQC NMR spectroscopy studies of the reaction of [15N]‐ 1 with the sequence 5′‐d{TATACATGTATA}2 allowed direct comparison of the stepwise formation of the 3′–3′ IXL with the previously studied 5′–5′ IXL on the analogous sequence 5′‐d(ATATGTACATAT)2. Whereas the preassociation and aquation steps were similar, differences were evident at the monofunctional binding step. The reaction did not yield a single distinct 3′–3′ 1,4‐GG IXL, but numerous cross‐linked adducts formed. Similar results were found for the reaction with the dinuclear [15N]‐ 2 . Molecular dynamics simulations for the 3′–3′ IXLs formed by both 1 and 2 showed a highly distorted structure with evident fraying of the end base pairs and considerable widening of the minor groove.  相似文献   

6.
Oligonucleotides containing an alkylene intrastrand cross‐link (IaCL) between the O6‐atoms of two consecutive 2′‐deoxyguanosines (dG) were prepared by solid‐phase synthesis. UV thermal denaturation studies of duplexes containing butylene and heptylene IaCL revealed a 20 °C reduction in stability compared to the unmodified duplexes. Circular dichroism profiles of these IaCL DNA duplexes exhibited signatures consistent with B‐form DNA. Human O6‐alkylguanine DNA alkyltransferase (hAGT) was capable of repairing both IaCL containing duplexes with slightly greater efficiency towards the heptylene analog. Interestingly, repair efficiencies of hAGT towards these IaCL were lower compared to O6‐alkylene linked IaCL lacking the 5′‐3′‐phosphodiester linkage between the connected 2′‐deoxyguanosine residues. These results demonstrate that the proficiency of hAGT activity towards IaCL at the O6‐atom of dG is influenced by the backbone phosphodiester linkage between the cross‐linked residues.  相似文献   

7.
Nucleobase‐directed spin‐labeling by the azide‐alkyne ‘click’ (CuAAC) reaction has been performed for the first time with oligonucleotides. 7‐Deaza‐7‐ethynyl‐2′‐deoxyadenosine ( 1 ) and 5‐ethynyl‐2′‐deoxyuridine ( 2 ) were chosen to incorporate terminal triple bonds into DNA. Oligonucleotides containing 1 or 2 were synthesized on a solid phase and spin labeling with 4‐azido‐2,2,6,6‐tetramethylpiperidine 1‐oxyl (4‐azido‐TEMPO, 3 ) was performed by post‐modification in solution. Two spin labels ( 3 ) were incorporated with high efficiency into the DNA duplex at spatially separated positions or into a ‘dA‐dT’ base pair. Modification at the 5‐position of the pyrimidine base or at the 7‐position of the 7‐deazapurine residue gave steric freedom to the spin label in the major groove of duplex DNA. By applying cw and pulse EPR spectroscopy, very accurate distances between spin labels, within the range of 1–2 nm, were measured. The spin–spin distance was 1.8±0.2 nm for DNA duplex 17 ( dA*7,10 ) ?11 containing two spin labels that are separated by two nucleotides within one individual strand. A distance of 1.4±0.2 nm was found for the spin‐labeled ‘dA‐dT’ base pair 15 ( dA*7 ) ?16 ( dT*6 ). The ‘click’ approach has the potential to be applied to all four constituents of DNA, which indicates the universal applicability of the method. New insights into the structural changes of canonical or modified DNA are expected to provide additional information on novel DNA structures, protein interaction, DNA architecture, and synthetic biology.  相似文献   

8.
A coumarin‐modified pyrimidine nucleoside ( 1 ) has been synthesized using a CuI‐catalyzed click reaction and incorporated into oligodeoxynucleotides (ODNs). Interstrand cross‐links are produced upon irradiation of ODNs containing 1 at 350 nm. Cross‐linking occurs through a [2+2] cycloaddition reaction with the opposing thymidine, 2′‐deoxycytidine, or 2′‐deoxyadenosine. A much higher reactivity was observed with dT than dC or dA. Irradiation of the dT‐ 1 and dC‐ 1 cross‐linked products at 254 nm leads to a reversible ring‐opening reaction, while such phenomena were not observed with dA‐ 1 adducts. The reversible reaction is ultrafast and complete within 50–90 s. Consistent photoswitching behavior was observed over 6 cycles of irradiation at 350 nm and 254 nm. To the best of our knowledge, this is the first example of photoswitchable interstrand cross‐linking formation induced by a modified pyrimidine nucleoside.  相似文献   

9.
The trinuclear platinum compound [{trans‐PtCl(NH3)2}2(μ‐trans‐Pt(NH3)2{NH2(CH2)6NH2}2)]4+ (BBR3464) belongs to the polynuclear class of platinum‐based anticancer agents. These agents form in DNA long‐range (Pt,Pt) interstrand cross‐links, whose role in the antitumor effects of BBR3464 predominates. Our results show for the first time that the interstrand cross‐links formed by BBR3464 between two guanine bases in opposite strands separated by two base pairs (1,4‐interstrand cross‐links) exist as two distinct conformers, which are not interconvertible, not only if these cross‐links are formed in the 5′‐5′, but also in the less‐usual 3′‐3’ direction. Analysis of the conformers by differential scanning calorimetry, chemical probes of DNA conformation, and minor groove binder Hoechst 33258 demonstrate that each of the four conformers affects DNA in a distinctly different way and adopts a different conformation. The results also support the thesis that the molecule of antitumor BBR3464 when forming DNA interstrand cross‐links may adopt different global structures, including different configurations of the linker chain of BBR3464 in the minor groove of DNA. Our findings suggest that the multiple DNA interstrand cross‐links available to BBR3464 may all contribute substantially to its cytotoxicity.  相似文献   

10.
To determine how the Y‐family translesion DNA polymerase η (Polη) processes lesions remains fundamental to understanding the molecular origins of the mutagenic translesion bypass. We utilized model systems employing a DNA double‐base lesion derived from 1,2‐GG intrastrand cross‐links of a new antitumor PtII complex containing a bulky carrier ligand, namely [PtCl2(cis‐1,4‐dach)] (DACH=diaminocyclohexane). The catalytic efficiency of Polη for the insertion of correct dCTP, with respect to the other incorrect nucleotides, opposite the 1,2‐GG cross‐link was markedly reduced by the DACH carrier ligand. This reduced efficiency of Polη to incorporate the correct dCTP could be due to a more extensive DNA unstacking and deformation of the minor groove induced in the DNA by the cross‐link of bulky [PtCl2(cis‐1,4‐dach)]. The major products of the bypass of this double‐base lesion produced by [PtCl2(cis‐1,4‐dach)] by Polη resulted from misincorporation of dATP opposite the platinated G residues. The results of the present work support the thesis that this misincorporation could be due to sterical effects of the bulkier 1,4‐DACH ligand hindering the formation of the Polη–DNA–incoming nucleotide complex. Calorimetric analysis suggested that thermodynamic factors may contribute to the forces that governed enhanced incorporation of the incorrect dATP by Polη as well.  相似文献   

11.
We report the design and synthesis of small molecules that exhibit enhanced luminescence in the presence of duplex rather than single‐stranded DNA. The local environment presented by a well‐known [Ru(dipyrido[3,2‐a:2′,3′‐c]phenazine)L2]2+‐based DNA intercalator was modified by functionalizing the bipyridine ligands with esters and carboxylic acids. By systematically varying the number and charge of the pendant groups, it was determined that decreasing the electrostatic interaction between the intercalator and the anionic DNA backbone reduced single‐strand interactions and translated to better duplex specificity. In studying this class of complexes, a single RuII complex emerged that selectively luminesces in the presence of duplex DNA with little to no background from interacting with single‐stranded DNA. This complex shows promise as a new dye capable of selectively staining double‐ versus single‐stranded DNA in gel electrophoresis, which cannot be done with conventional SYBR dyes.  相似文献   

12.
Oligonucleotides containing the 5‐substituted 2′‐deoxyuridines 1b or 1d bearing side chains with terminal C?C bonds are described, and their duplex stability is compared with oligonucleotides containing the 5‐alkynyl compounds 1a or 1c with only one nonterminal C?C bond in the side chain. For this, 5‐iodo‐2′‐deoxyuridine ( 3 ) and diynes or alkynes were employed as starting materials in the Sonogashira cross‐coupling reaction (Scheme 1). Phosphoramidites 2b – d were prepared (Scheme 3) and used as building blocks in solid‐phase synthesis. Tm Measurements demonstrated that DNA duplexes containing the octa‐1,7‐diynyl side chain or a diprop‐2‐ynyl ether residue, i.e., containing 1b or 1d , are more stable than those containing only one triple bond, i.e., 1a or 1c (Table 3). The diyne‐modified nucleosides were employed in further functionalization reactions by using the protocol of the CuI‐catalyzed Huisgen–Meldal–Sharpless [2+3] cycloaddition (‘click chemistry’) (Scheme 2). An aliphatic azide, i. e., 3′‐azido‐3′‐deoxythymidine (AZT; 4 ), as well as the aromatic azido compound 5 were linked to the terminal alkyne group resulting in 1H‐1,2,3‐triazole‐modified derivatives 6 and 7 , respectively (Scheme 2), of which 6 forms a stable duplex DNA (Table 3). The Husigen–Meldal–Sharpless cycloaddition was also performed with oligonucleotides (Schemes 4 and 5).  相似文献   

13.
We report the development of a new heterobase that is held together through reversible bonding. The so‐formed cross‐link adds strong stabilization to the DNA duplex. Despite this, the cross‐link opens and closes through reversible imine bonding. Moreover, even enzymatic incorporation of the cross‐link is possible. The new principle can be used to stabilize DNA duplexes and nanostructures that otherwise require high salt concentrations, which may hinder biological applications.  相似文献   

14.
A series of oligonucleotides containing (5′S)‐5′‐C‐butyl‐ and (5′S)‐5′‐C‐isopentyl‐substituted 2′‐deoxyribonucleosides were designed, prepared, and characterized with the intention to explore alkyl‐zipper formation between opposing alkyl chains across the minor groove of oligonucleotide duplexes as a means to modulate DNA‐duplex stability. From four possible arrangements of the alkyl groups that differ in the density of packing of the alkyl chains across the minor groove, three (duplex types I – III , Fig. 2) could experimentally be realized and their duplex‐forming properties analyzed by UV‐melting curves, CD spectroscopy, and isothermal titration calorimetry (ITC), as well as by molecular modeling. The results show that all arrangements of alkyl residues within the minor groove of DNA are thermally destabilizing by 1.5–3°/modification in Tm. We found that, within the proposed duplexes with more loosely packed alkyl groups (type‐ III duplexes), accommodation of alkyl residues without extended distorsion of the helical parameters of B‐DNA is possible but does not lead to higher thermodynamic stability. The more densely packed and more unevenly distributed arrangement (type‐ II duplexes) seems to suffer from ecliptic positioning of opposite alkyl groups, which might account for a systematic negative contribution to stability due to steric interactions. The decreased stability in the type‐ III duplexes described here may be due either to missing hydrophobic interactions of the alkyl groups (not bulky enough to make close contacts), or to an overcompensation of favorable alkyl‐zipper formation presumably by loss of structured H2O in the minor groove.  相似文献   

15.
The structure and stability of a 14‐mer DNA duplex containing a nucleotide analog with a hydroxymethyl substituent at the C(8) of 2′‐deoxyadenosine has been investigated by molecular‐dynamics simulation. The DNA duplex studied has the sequence 5′‐d(CGTAAGCTCGATAG)‐3′⋅5′‐d(CTATCGA*GCTTACG)‐3′, where the O(3′) of the dG6 nucleotide in the second strand is linked through a phosphinato group with the O(10) of the dA 2′‐deoxyadenosine‐derived nucleotide. Previous experimental results showed that the stability of this duplex in aqueous solution of 0.1M NaCl at pH 7 and room temperature is significantly lower than that of the corresponding unmodified DNA duplex. Comparison of molecular‐dynamics trajectories of the unmodified and modified B‐DNA duplexes in aqueous solution, at similar conditions than the experiment, shows that the substitution of the dA nucleotide by the dA* nucleotide in the second strand induces stretching of the double helix, which results in opening of the grooves and consequent exposure of the double‐helix core to the solvent.  相似文献   

16.
The design of photoactive functionalized electrodes for the sensitive transduction of double‐stranded DNA hybridization is reported. Multifunctional complex [Ru(bpy‐pyrrole)2(dppn)]2+ (bpy‐pyrrole=4‐methyl‐4′‐butylpyrrole‐2,2′‐bipyridine, dppn=benzo[i]dipyrido[3,2‐a:2′,3′‐c]phenazine) exhibiting photosensitive, DNA‐intercalating, and electropolymerizable properties was synthesized and characterized. The pyrrole groups undergo oxidative electropolymerization on planar electrodes forming a metallopolymer layer on the electrode. Thanks to the photoelectrochemical and intercalating properties of the immobilized RuII complex, the binding of a double‐stranded HIV DNA target was photoelectrochemically detected on planar electrodes. Photocurrent generation through visible irradiation was correlated to the interaction between double‐stranded DNA and the metallointercalator polymer. These interactions were well fitted by using a Langmuir isotherm, which allowed a dissociation constant of 2×106 L mol?1 to be estimated. The low detection limit of 1 fmol L?1 and sensitivity of 0.01 units per decade demonstrate excellent suitability of these modified electrodes for detection of duplex DNA.  相似文献   

17.
Triplexes formed from oligonucleic acids are key to a number of biological processes. They have attracted attention as molecular biology tools and as a result of their relevance in novel therapeutic strategies. The recognition properties of single‐stranded nucleic acids are also relevant in third‐strand binding. Thus, there has been considerable activity in generating such moieties, referred to as triplex forming oligonucleotides (TFOs). Triplexes, composed of Watson–Crick (W–C) base‐paired DNA duplexes and a Hoogsteen base‐paired RNA strand, are reported to be more thermodynamically stable than those in which the third strand is DNA. Consequently, synthetic efforts have been focused on developing TFOs with RNA‐like structural properties. Here, the structural and stability studies of such a TFO, composed of deoxynucleic acids, but with 3′‐S‐phosphorothiolate (3′‐SP) linkages at two sites is described. The modification results in an increase in triplex melting temperature as determined by UV absorption measurements. 1H NMR analysis and structure generation for the (hairpin) duplex component and the native and modified triplexes revealed that the double helix is not significantly altered by the major groove binding of either TFO. However, the triplex involving the 3′‐SP modifications is more compact. The 3′‐SP modification was previously shown to stabilise G‐quadruplex and i‐motif structures and therefore is now proposed as a generic solution to stabilising multi‐stranded DNA structures.  相似文献   

18.
The synthesis of the N9‐ and N8‐(β‐D ‐2′‐deoxyribonucleosides) 2 and 10 , respectively, of 8‐aza‐7‐deazapurin‐2‐amine (=1H‐pyrazolo[3,4‐d]pyrimidin‐6‐amine) is described. The fluorescence properties and the stability of the N‐glycosylic bond of 2 were determined and compared with those of the 2′‐deoxyribonucleosides 1 and 3 of purin‐2‐amine and 7‐deazapurin‐2‐amine respectively. From the nucleoside 2 , the phosphoramidite 14 was prepared, and oligonucleotides were synthesized. Duplexes containing compound 1 or 2 are slightly less stable than those containing 2′‐deoxyadenosine, while their CD spectra are rather different. The fluorescence of the nucleosides is strongly quenched (>95%) in single‐stranded as well as in duplex DNA. The residual fluorescence was used to determine the melting profiles, which gave Tm values similar to those determined from the UV melting curves.  相似文献   

19.
A site‐specific Cu2+ binding motif within a DNA duplex for distance measurements by ESR spectroscopy is reported. This motif utilizes a commercially available 2,2′‐dipicolylamine (DPA) phosphormadite easily incorporated into any DNA oligonucleotide during initial DNA synthesis. The method only requires the simple post‐synthetic addition of Cu2+ without the need for further chemical modification. Notably, the label is positioned within the DNA duplex, as opposed to outside the helical perimeter, for an accurate measurement of duplex distance. A distance of 2.7 nm was measured on a doubly Cu2+‐labeled DNA sequence, which is in exact agreement with the expected distance from both DNA modeling and molecular dynamic simulations. This result suggests that with this labeling strategy the ESR measured distance directly reports on backbone DNA distance, without the need for further modeling. Furthermore, the labeling strategy is structure‐ and nucleotide‐independent.  相似文献   

20.
Squaramate‐linked 2′‐deoxycytidine 5′‐O‐triphosphate was synthesized and found to be good substrate for KOD XL DNA polymerase in primer extension or PCR synthesis of modified DNA. The resulting squaramate‐linked DNA reacts with primary amines to form a stable diamide linkage. This reaction was used for bioconjugations of DNA with Cy5 and Lys‐containing peptides. Squaramate‐linked DNA formed covalent cross‐links with histone proteins. This reactive nucleotide has potential for other bioconjugations of nucleic acids with amines, peptides or proteins without need of any external reagent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号