首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《中国化学快报》2020,31(10):2641-2644
The high cost and low reserves of noble metals greatly hinder their practical applications in new energy production and conversion. The exploration of cost-effective alternative electrocatalysts with the ability to drive hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is extremely significant to promote overall water splitting. Herein, ultrathin CoSe2/CNTs nanocomposites have been synthesized by a facile two-step method, where the ultrathin Co-MOF (metal organic-framework) decorated with cable-like carbon nanotubes (CNTs) (Co-MOF/CNTs) was initially fabricated, and followed a low-temperature selenization process. The ultrathin CoSe2 nanosheets as well as the superior conductivity of CNTs synergistically resulted in abundant active sites and enhanced conductivity to boost the electrocatalytic activity. The as-prepared CoSe2/CNTs electrocatalysts exhibited an overpotential of 190 mV and 300 mV vs. reversible hydrogen electrode (RHE) at a current density of 10 mA/cm2 for the HER and OER in alkaline solution, respectively, and demonstrated superior durability. Furthermore, the as-prepared bifunctional CoSe2/CNTs electrocatalysts can act as cathode and anode in an electrolyzer, showing a cell voltage of 1.75 V at 10 mA/cm2 for overall water splitting.  相似文献   

2.
Z‐scheme water splitting is a promising approach based on high‐performance photocatalysis by harvesting broadband solar energy. Its efficiency depends on the well‐defined interfaces between two semiconductors for the charge kinetics and their exposed surfaces for chemical reactions. Herein, we report a facile cation‐exchange approach to obtain compounds with both properties without the need for noble metals by forming Janus‐like structures consisting of γ‐MnS and Cu7S4 with high‐quality interfaces. The Janus‐like γ‐MnS/Cu7S4 structures displayed dramatically enhanced photocatalytic hydrogen production rates of up to 718 μmol g−1 h−1 under full‐spectrum irradiation. Upon further integration with an MnOx oxygen‐evolution cocatalyst, overall water splitting was accomplished with the Janus structures. This work provides insight into the surface and interface design of hybrid photocatalysts, and offers a noble‐metal‐free approach to broadband photocatalytic hydrogen production.  相似文献   

3.
Photocatalytic water splitting for hydrogen production using sustainable sunlight is a promising alternative to industrial hydrogen production. However, the scarcity of highly active, recyclable, inexpensive photocatalysts impedes the development of photocatalytic hydrogen evolution reaction (HER) schemes. Herein, a metal–organic framework (MOF)‐template strategy was developed to prepare non‐noble metal co‐catalyst/solid solution heterojunction NiS/ZnxCd1−xS with superior photocatalytic HER activity. By adjusting the doping metal concentration in MOFs, the chemical compositions and band gaps of the heterojunctions can be fine‐tuned, and the light absorption capacity and photocatalytic activity were further optimized. NiS/Zn0.5Cd0.5S exhibits an optimal HER rate of 16.78 mmol g−1 h−1 and high stability and recyclability under visible‐light irradiation (λ>420 nm). Detailed characterizations and in‐depth DFT calculations reveal the relationship between the heterojunction and photocatalytic activity and confirm the importance of NiS in accelerating the water dissociation kinetics, which is a crucial factor for photocatalytic HER.  相似文献   

4.
Photocatalytic water splitting for hydrogen production using sustainable sunlight is a promising alternative to industrial hydrogen production. However, the scarcity of highly active, recyclable, inexpensive photocatalysts impedes the development of photocatalytic hydrogen evolution reaction (HER) schemes. Herein, a metal–organic framework (MOF)‐template strategy was developed to prepare non‐noble metal co‐catalyst/solid solution heterojunction NiS/ZnxCd1?xS with superior photocatalytic HER activity. By adjusting the doping metal concentration in MOFs, the chemical compositions and band gaps of the heterojunctions can be fine‐tuned, and the light absorption capacity and photocatalytic activity were further optimized. NiS/Zn0.5Cd0.5S exhibits an optimal HER rate of 16.78 mmol g?1 h?1 and high stability and recyclability under visible‐light irradiation (λ>420 nm). Detailed characterizations and in‐depth DFT calculations reveal the relationship between the heterojunction and photocatalytic activity and confirm the importance of NiS in accelerating the water dissociation kinetics, which is a crucial factor for photocatalytic HER.  相似文献   

5.
Developing highly efficient and low‐cost photocatalysts for overall water splitting has long been a pursuit for converting solar power into clean hydrogen energy. Herein, we demonstrate that a nonstoichiometric nickel–cobalt double hydroxide can achieve overall water splitting by itself upon solar light irradiation, avoiding the consumption of noble‐metal co‐catalysts. We employed an intensive laser to ablate a NiCo alloy target immersed in alkaline solution, and produced so‐called L‐NiCo nanosheets with a nonstoichiometric composition and O2?/Co3+ ions exposed on the surface. The nonstoichiometric composition broadens the band gap, while O2? and Co3+ ions boost hydrogen and oxygen evolution, respectively. As such, the photocatalyst achieves a H2 evolution rate of 1.7 μmol h?1 under AM 1.5G sunlight irradiation and an apparent quantum yield (AQE) of 1.38 % at 380 nm.  相似文献   

6.
In pursuit of inexpensive and earth abundant photocatalysts for solar hydrogen production from water, conjugated polymers have shown potential to be a viable alternative to widely used inorganic counterparts. The photocatalytic performance of polymeric photocatalysts, however, is very poor in comparison to that of inorganic photocatalysts. Most of the organic photocatalysts are active in hydrogen production only when a sacrificial electron donor (SED) is added into the solution, and their high performances often rely on presence of noble metal co‐catalyst (e.g. Pt). For pursuing a carbon neutral and cost‐effective green hydrogen production, unassisted hydrogen production solely from water is one of the critical requirements to translate a mere bench‐top research interest into the real world applications. Although this is a generic problem for both inorganic and organic types of photocatalysts, organic photocatalysts are mostly investigated in the half‐reaction, and have so far shown limited success in hydrogen production from overall water‐splitting. To make progress, this article exclusively discusses critical factors that are limiting the overall water‐splitting in organic photocatalysts. Additionally, we also have extended the discussion to issues related to stability, accurate reporting of the hydrogen production as well as challenges to be resolved to reach 10 % STH (solar‐to‐hydrogen) conversion efficiency.  相似文献   

7.
An efficient, stable and scalable hybrid photoelectrode for visible‐light‐driven H2 generation in an aqueous pH 9.2 electrolyte solution is reported. The photocathode consists of a p‐type Si substrate layered with a Ti and Ni‐containing composite film, which acts as both a protection and electrocatalyst layer on the Si substrate. The film is prepared by the simple drop casting of the molecular single‐source precursor, [{Ti2(OEt)9(NiCl)}2] (TiNipre), onto the p‐Si surface at room temperature, followed by cathodic in situ activation to form the catalytically active TiNi film (TiNicat). The p‐Si|TiNicat photocathode exhibits prolonged hydrogen generation with a stable photocurrent of approximately ?5 mA cm?2 at 0 V vs. RHE in an aqueous pH 9.2 borate solution for several hours, and serves as a benchmark non‐noble photocathode for solar H2 evolution that operates efficiently under neutral–alkaline conditions.  相似文献   

8.
Hydrogen production through water splitting is considered a promising approach for solar energy harvesting. However, the variable and intermittent nature of solar energy and the co‐production of H2 and O2 significantly reduce the flexibility of this approach, increasing the costs of its use in practical applications. Herein, using the reversible n‐type doping/de‐doping reaction of the solid‐state polytriphenylamine‐based battery electrode, we decouple the H2 and O2 production in acid water electrolysis. In this architecture, the H2 and O2 production occur at different times, which eliminates the issue of gas mixing and adapts to the variable and intermittent nature of solar energy, facilitating the conversion of solar energy to hydrogen (STH). Furthermore, for the first time, we demonstrate a membrane‐free solar water splitting through commercial photovoltaics and the decoupled acid water electrolysis, which potentially paves the way for a new approach for solar water splitting.  相似文献   

9.
Designing cost‐effective and efficient electrocatalysts plays a pivotal role in advancing the development of electrochemical water splitting for hydrogen generation. Herein, multifunctional active‐center‐transferable heterostructured electrocatalysts, platinum/lithium cobalt oxide (Pt/LiCoO2) composites with Pt nanoparticles (Pt NPs) anchored on LiCoO2 nanosheets, are designed towards highly efficient water splitting. In this electrocatalyst system, the active center can be alternatively switched between Pt species and LiCoO2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Specifically, Pt species are the active centers and LiCoO2 acts as the co‐catalyst for HER, whereas the active center transfers to LiCoO2 and Pt turns into the co‐catalyst for OER. The unique architecture of Pt/LiCoO2 heterostructure provides abundant interfaces with favorable electronic structure and coordination environment towards optimal adsorption behavior of reaction intermediates. The 30 % Pt/LiCoO2 heterostructured electrocatalyst delivers low overpotentials of 61 and 285 mV to achieve 10 mA cm?2 for HER and OER in alkaline medium, respectively.  相似文献   

10.
The rising H2 economy demands active and durable electrocatalysts based on low‐cost, earth‐abundant materials for water electrolysis/photolysis. Here we report nanoscale Ni metal cores over‐coated by a Cr2O3‐blended NiO layer synthesized on metallic foam substrates. The Ni@NiO/Cr2O3 triphase material exhibits superior activity and stability similar to Pt for the hydrogen‐evolution reaction in basic solutions. The chemically stable Cr2O3 is crucial for preventing oxidation of the Ni core, maintaining abundant NiO/Ni interfaces as catalytically active sites in the heterostructure and thus imparting high stability to the hydrogen‐evolution catalyst. The highly active and stable electrocatalyst enables an alkaline electrolyzer operating at 20 mA cm?2 at a voltage lower than 1.5 V, lasting longer than 3 weeks without decay. The non‐precious metal catalysts afford a high efficiency of about 15 % for light‐driven water splitting using GaAs solar cells.  相似文献   

11.
Photodeposition has been widely used as a mild and efficient synthetic method to deposit co‐catalysts. It is also worth studying how to synthesize non‐noble metal photocatalysts with uniform dispersion. Different synthetic conditions in photodeposition have a certain influence on particle size distribution and photocatalytic activity. Therefore, we designed experiments to prepare the inexpensive composite photocatalyst Ni(OH)2/g‐C3N4 by photodeposition. The Ni(OH)2 co‐catalysts disperse uniformly with particle sizes of about 10 nm. The photocatalytic hydrogen production rate of Ni(OH)2/g‐C3N4 reached about 19 mmol g?1 h?1, with the Ni(OH)2 deposition amount about 1.57 %. During 16 h stability testing, the rate of hydrogen production did not decrease significantly. The composite catalyst also revealed a good hydrogen production performance under sunlight. The Ni(OH)2 co‐catalyst enhanced the separation ability of photogenerated carriers, which was proved by surface photovoltage and fluorescence analysis.  相似文献   

12.
Carbon dioxide (CO2) and hydrogen sulfide (H2S) are generally concomitant with methane (CH4) in natural gas and traditionally deemed useless or even harmful. Developing strategies that can simultaneously convert both CO2 and H2S into value‐added products is attractive; however it has not received enough attention. A solar‐driven electrochemical process is demonstrated using graphene‐encapsulated zinc oxide catalyst for CO2 reduction and graphene catalyst for H2S oxidation mediated by EDTA‐Fe2+/EDTA‐Fe3+ redox couples. The as‐prepared solar‐driven electrochemical system can realize the simultaneous conversion of CO2 and H2S into carbon monoxide and elemental sulfur at near neutral conditions with high stability and selectivity. This conceptually provides an alternative avenue for the purification of natural gas with added economic and environmental benefits.  相似文献   

13.
The complex [Ni(bpy)3]2+ (bpy=2,2′‐bipyridine) is an active catalyst for visible‐light‐driven H2 production from water when employed with [Ir(dfppy)2(Hdcbpy)] [dfppy=2‐(3,4‐difluorophenyl)pyridine, Hdcbpy=4‐carboxy‐2,2′‐bipyridine‐4′‐carboxylate] as the photosensitizer and triethanolamine as the sacrificial electron donor. The highest turnover number of 520 with respect to the nickel(II) catalyst is obtained in a 8:2 acetonitrile/water solution at pH 9. The H2‐evolution system is more stable after the addition of an extra free bpy ligand, owing to faster catalyst regeneration. The photocatalytic results demonstrate that the nickel(II) polypyridyl catalyst can act as a more effective catalyst than the commonly utilized [Co(bpy)3]2+. This study may offer a new paradigm for constructing simple and noble‐metal‐free catalysts for photocatalytic hydrogen production.  相似文献   

14.
The splitting of water into hydrogen and oxygen molecules using sunlight is an attractive method for solar energy storage. Until now, photoelectrochemical hydrogen evolution is mostly studied in acidic solutions, in which the hydrogen evolution is more facile than in alkaline solutions. Herein, we report photoelectrochemical hydrogen production in alkaline solutions, which are more favorable than acidic solutions for the complementary oxygen evolution half‐reaction. We show for the first time that amorphous molybdenum sulfide is a highly active hydrogen evolution catalyst in basic medium. The amorphous molybdenum sulfide catalyst and a Ni–Mo catalyst are then deposited on surface‐protected cuprous oxide photocathodes to catalyze sunlight‐driven hydrogen production in 1 M KOH. The photocathodes give photocurrents of ?6.3 mA cm?2 at the reversible hydrogen evolution potential, the highest yet reported for a metal oxide photocathode using an earth‐abundant hydrogen evolution reaction catalyst.  相似文献   

15.
Photo/electrochemical CO2 splitting is impeded by the low cost‐effective catalysts for key reactions: CO2 reduction (CDRR) and water oxidation. A porous silicon and nitrogen co‐doped carbon (SiNC) nanomaterial by a facile pyrolyzation was developed as a metal‐free bifunctional electrocatalyst. CO2‐to‐CO and oxygen evolution (OER) partial current density under neutral conditions were enhanced by two orders of magnitude in the Tafel regime on SiNC relative to single‐doped comparisons beyond their specific area gap. The photovoltaic‐driven CO2 splitting device with SiNC electrodes imitating photosynthesis yielded an overall solar‐to‐chemical efficiency of advanced 12.5 % (by multiplying energy efficiency of CO2 splitting cell and photovoltaic device) at only 650 mV overpotential. Mechanism studies suggested the elastic electron structure of ?Si(O)?C?N? unit in SiNC as the highly active site for CDRR and OER simultaneously by lowering the free energy of CDRR and OER intermediates adsorption.  相似文献   

16.
Scalable solar hydrogen production by water splitting using particulate photocatalysts is promising for renewable energy utilization. However, photocatalytic overall water splitting is challenging owing to slow water oxidation kinetics, severe reverse reaction, and H2/O2 gas separation. Herein, mimicking nature photosynthesis, a practically feasible approach named Hydrogen Farm Project (HFP) is presented, which is composed of solar energy capturing and hydrogen production subsystems integrated by a shuttle ion loop, Fe3+/Fe2+. Well‐defined BiVO4 crystals with precisely tuned {110}/{010} facets are ideal photocatalysts to realize the HFP, giving up to 71 % quantum efficiency for photocatalytic water oxidation and full forward reaction with nearly no reverse reaction. An overall solar‐to‐chemical efficiency over 1.9 % and a solar‐to‐hydrogen efficiency exceeding 1.8 % could be achieved. Furthermore, a scalable HFP panel for solar energy storage was demonstrated under sunlight outdoors.  相似文献   

17.
Nanocomposites of tantalum‐based pyrochlore nanoparticles and indium hydroxide were prepared by a hydrothermal process for UV‐driven photocatalytic reactions including overall water splitting, hydrogen production from photoreforming of methanol, and CO2 reduction with water to produce CO. The best catalyst was more than 20 times more active than sodium tantalate in overall water splitting and 3 times more active than Degussa P25 TiO2 in CO2 reduction. Moreover, the catalyst was very stable while generating stoichiometric products of H2 (or CO) and O2 throughout long‐term photocatalytic reactions. After the removal of In(OH)3, the pyrochlore nanoparticles remained highly active for H2 production from pure water and aqueous methanol solution. Both experimental studies and density functional theory calculations suggest that the pyrochlore nanoparticles catalyzed the water reduction to produce H2, whereas In(OH)3 was the major active component for water oxidation to produce O2.  相似文献   

18.
The solar photocatalysis of water splitting represents a significant branch of enzymatic simulation by efficient chemical conversion and the generation of hydrogen as green energy provides a feasible way for the replacement of fossil fuels to solve energy and environmental issues. We report herein the self‐assembly of a CoII‐based metal–organic framework (MOF) constructed from 4,4′,4′′,4′′′‐(ethene‐1,1,2,2‐tetrayl)tetrabenzoic acid [or tetrakis(4‐carboxyphenyl)ethylene, H4TCPE] and 4,4′‐bipyridyl (bpy) as four‐point‐ and two‐point‐connected nodes, respectively. This material, namely, poly[(μ‐4,4′‐bipyridyl)[μ8‐4,4′,4′′,4′′′‐(ethene‐1,1,2,2‐tetrayl)tetrabenzoato]cobalt(II)], [Co(C30H16O8)(C10H8N2)]n, crystallized as dark‐red block‐shaped crystals with high crystallinity and was fully characterized by single‐crystal X‐ray diffraction, PXRD, IR, solid‐state UV–Vis and cyclic voltammetry (CV) measurements. The redox‐active CoII atoms in the structure could be used as the catalytic sites for hydrogen production via water splitting. The application of this new MOF as a heterogeneous catalyst for light‐driven H2 production has been explored in a three‐component system with fluorescein as photosensitizer and trimethylamine as the sacrificial electron donor, and the initial volume of H2 production is about 360 µmol after 12 h irradiation.  相似文献   

19.
Atomic co‐catalysts offer high potential to improve the photocatalytic performance, of which the preparation with earth‐abundant elements is challenging. Here, a new molten salt method (MSM) is designed to prepare atomic Ni co‐catalyst on widely studied TiO2 nanoparticles. The liquid environment and space confinement effect of the molten salt leads to atomic dispersion of Ni ions on TiO2, while the strong polarizing force provided by the molten salt promotes formation of strong Ni?O bonds. Interestingly, Ni atoms are found to facilitate the formation of oxygen vacancies (OV) on TiO2 during the MSM process, which benefits the charge transfer and hydrogen evolution reaction. The synergy of atomic Ni co‐catalyst and OV results in 4‐time increase in H2 evolution rate compared to that of the Ni co‐catalyst on TiO2 prepared by an impregnation method. This work provides a new strategy of controlling atomic co‐catalyst together with defects for efficient photocatalytic water splitting.  相似文献   

20.
A stable noble‐metal‐free hydrogen evolution photocatalyst based on graphite carbon nitride (g‐C3N4) was developed by a molecular‐level design strategy. Surface functionalization was successfully conducted to introduce a single nickel active site onto the surface of the semiconducting g‐C3N4. This catalyst family (with less than 0.1 wt % of Ni) has been found to produce hydrogen with a rate near to the value obtained by using 3 wt % platinum as co‐catalyst. This new catalyst also exhibits very good stability under hydrogen evolution conditions, without any evidence of deactivation after 24 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号