首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human macrophage galactose‐type lectin (MGL) is a key physiological receptor for the carcinoma‐associated Tn antigen (GalNAc‐α‐1‐O‐Ser/Thr) in mucins. NMR and modeling‐based data on the molecular recognition features of synthetic Tn‐bearing glycopeptides by MGL are presented. Cognate epitopes on the sugar and matching key amino acids involved in the interaction were identified by saturation transfer difference (STD) NMR spectroscopy. Only the amino acids close to the glycosylation site in the peptides are involved in lectin contact. Moreover, control experiments with non‐glycosylated MUC1 peptides unequivocally showed that the sugar residue is essential for MGL binding, as is Ca2+. NMR data were complemented with molecular dynamics simulations and Corcema‐ST to establish a 3D view on the molecular recognition process between Gal, GalNAc, and the Tn‐presenting glycopeptides and MGL. Gal and GalNAc have a dual binding mode with opposite trend of the main interaction pattern and the differences in affinity can be explained by additional hydrogen bonds and CH–π contacts involving exclusively the NHAc moiety.  相似文献   

2.
The molecular recognition of several glycopeptides bearing Tn antigen (α‐O‐GalNAc‐Ser or α‐O‐GalNAc‐Thr) in their structure by three lectins with affinity for this determinant has been analysed. The work yields remarkable results in terms of epitope recognition, showing that the underlying amino acid of Tn (serine or threonine) plays a key role in the molecular recognition. In fact, while Soybean agglutinin and Vicia villosa agglutinin lectins prefer Tn‐threonine, Helix pomatia agglutinin shows a higher affinity for the glycopeptides carrying Tn‐serine. The different conformational behaviour of the two Tn biological entities, the residues of the studied glycopeptides in the close proximity to the Tn antigen and the topology of the binding site of the lectins are at the origin of these differences.  相似文献   

3.
Anti‐MUC1 monoclonal antibodies (mAbs) are powerful tools that can be used to recognize cancer‐related MUC1 molecules, the O‐glycosylation status of which is believed to affect binding affinity. We demonstrate the feasibility of using a rapid screening methodology to elucidate those effects. The approach involves i) “one‐bead‐one‐compound”‐based preparation of bilayer resins carrying glycopeptides on the shell and mass‐tag tripeptides coding O‐glycan patterns in the core, ii) on‐resin screening with an anti‐MUC1 mAb, iii) separating positive resins by utilizing secondary antibody conjugation with magnetic beads, and (iv) decoding the mass‐tag that is detached from the positive resins pool by using mass spectrometric analysis. We tested a small library consisting of 27 MUC1 glycopeptides with different O‐glycosylations against anti‐MUC1 mAb clone VU‐3C6. Qualitative mass‐tag analysis showed that increasing the number of glycans leads to an increase in the binding affinity. Six glycopeptides selected from the library were validated by using a microarray‐based assay. Our screening provides valuable information on O‐glycosylations of epitopes leading to high affinity with mAb.  相似文献   

4.
The retaining glycosyltransferase GalNAc‐T2 is a member of a large family of human polypeptide GalNAc‐transferases that is responsible for the post‐translational modification of many cell‐surface proteins. By the use of combined structural and computational approaches, we provide the first set of structural snapshots of the enzyme during the catalytic cycle and combine these with quantum‐mechanics/molecular‐mechanics (QM/MM) metadynamics to unravel the catalytic mechanism of this retaining enzyme at the atomic‐electronic level of detail. Our study provides a detailed structural rationale for an ordered bi–bi kinetic mechanism and reveals critical aspects of substrate recognition, which dictate the specificity for acceptor Thr versus Ser residues and enforce a front‐face SNi‐type reaction in which the substrate N‐acetyl sugar substituent coordinates efficient glycosyl transfer.  相似文献   

5.
O‐Acyl isopeptides, in which the N‐acyl linkage on the hydroxyamino acid residue (e.g., Ser and Thr) is replaced with an O‐acyl linkage, generally possess superior water‐solubility to their corresponding native peptides, as well as other distinct physicochemical properties. In addition, O‐acyl isopeptides can be rapidly converted into their corresponding native peptide under neutral aqueous conditions through an O‐to‐N acyl migration. By exploiting these characteristics, researchers have applied the O‐acyl isopeptide method to various peptide‐synthesis fields, such as the synthesis of aggregative peptides and convergent peptide synthesis. This O‐acyl‐isopeptide approach also serves as a means to control the biological function of the peptide in question. Herein, we report the synthesis of O‐acyl isopeptides and some of their applications.  相似文献   

6.
Galactosaminogalactan (GAG) is a prominent cell wall component of the opportunistic fungal pathogen Aspergillus fumigatus. GAG is a heteropolysaccharide composed of α‐1,4‐linked galactose, galactosamine and N‐acetylgalactosamine residues. To enable biochemical studies, a library of GAG‐fragments was constructed featuring specimens containing α‐galactose‐, α‐galactosamine and α‐N‐acetyl galactosamine linkages. Key features of the synthetic strategy include the use of di‐tert‐butylsilylidene directed α‐galactosylation methodology and regioselective benzoylation reactions using benzoyl‐hydroxybenzotriazole (Bz‐OBt). Structural analysis of the Gal, GalN and GalNAc oligomers by a combination of NMR and MD approaches revealed that the oligomers adopt an elongated, almost straight, structure, stabilized by inter‐residue H‐bonds, one of which is a non‐conventional C?H???O hydrogen bond between H5 of the residue (i+1) and O3 of the residue (i). The structures position the C‐2 substituents almost perpendicular to the oligosaccharide main chain axis, pointing to the bulk solvent and available for interactions with antibodies or other binding partners.  相似文献   

7.
Natriuretic peptides (NP) play important roles in human cardiac physiology through their guanylyl cyclase receptors NPR‐A and NPR‐B. Described herein is a bifunctional O‐glycosylated natriuretic peptide, TcNPa, from Tropidechis carinatus venom and it unusually targets both NPR‐A and NPR‐B. Characterization using specific glycosidases and ETD‐MS identified the glycan as galactosyl‐β(1‐3)‐N‐acetylgalactosamine (Gal‐GalNAc) and was α‐linked to the C‐terminal threonine residue. TcNPa contains the characteristic NP 17‐membered disulfide ring with conserved phenylalanine and arginine residues. Both glycosylated and nonglycosylated forms were synthesized by Fmoc solid‐phase peptide synthesis and NMR analysis identified an α‐helix within the disulfide ring containing the putative pharmacophore for NPR‐A. Surprisingly, both forms activated NPR‐A and NPR‐B and were relatively resistant towards proteolytic degradation in plasma. This work will underpin the future development of bifunctional NP peptide mimetics.  相似文献   

8.
It has been discussed in the literature that electron delocalization along the peptide backbone and side chain modulates the physical and chemical features of peptides and proteins. The structure and properties of peptides are determined by their charge‐density distribution, such that the modification of its side chain plays an important role on its electronic structure and physicochemical properties. Research on Entamoeba histolytica soluble factors led to the identification of the pentapeptide Met‐Gln‐Cys‐Asn‐Ser, with anti‐inflammatory in vivo and in vitro effects. A synthetic pentapeptide, Met‐Pro‐Cys‐Asn‐Ser, maintained the same anti‐inflammatory actions in experimental assays. A previous theoretical study allowed proposing the Cys‐Asn‐Ser tripeptide (CNS tripeptide) as the pharmacophore group of both molecules. This theoretical hypothesis was recently confirmed experimentally. The objective of this work was to study the influence of the electron donor and electron withdrawing substituent groups on the electronic structure and physicochemical properties of the CNS tripeptide derivatives through a theoretical study at the density functional theory level of theory. Our results in deprotonation energies showed that the relative acidity of hydrogen atom (H2) of the serine‐amide group increases with the electron withdrawing groups. This result was confirmed by means of a study of bond order. The proton affinities illustrated that the electron donor groups favored the basicity of the amino group of the cysteine amino acid. Atomic charges, Frontier molecular orbitals (HOMO–LUMO), and electrostatic potential isosurface and its geometric parameters permitted to analyze the effect that provoked the electron donor and electron attractor groups on its electronic structure and physicochemical features and to identify some reactive sites that could be associated with the anti‐inflammatory activity of tripeptide CNS derivatives. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem 110:2398–2410, 2010  相似文献   

9.
O‐Glycosylation is one of the most important post‐translational modifications of proteins. The attachment of carbohydrates to the peptide backbone influences the conformation as well as the solubility of the conjugates and can even be essential for binding to specific ligands in cell–cell interactions or for active transport over membranes. This makes glycopeptides an interesting class of compounds for medical applications. To enhance the long‐term availability of these molecules in vivo, the stabilization of the glycosidic bond between the amino acid residue and the carbohydrate is of interest. The described modular approach affords β‐linked C‐glycosyl amino acids by a sequence of Petasis olefination of glyconolactones, stereoselective hydroboration and a mild B‐alkyl‐Suzuki coupling reaction. The coupling products were transformed to C‐glycosyl amino acid building‐blocks suitable for solid‐phase synthesis and successfully incorporated into a partial sequence of the tumor‐associated MUC1‐glycopeptide. The resulting C‐glycopeptides are candidates for the development of long‐term stable mimics of O‐glycopeptide vaccines.  相似文献   

10.
The crystal structure of methyl α‐d ‐mannopyranosyl‐(1→3)‐2‐O‐acetyl‐β‐d ‐mannopyranoside monohydrate, C15H26O12·H2O, ( II ), has been determined and the structural parameters for its constituent α‐d ‐mannopyranosyl residue compared with those for methyl α‐d ‐mannopyranoside. Mono‐O‐acetylation appears to promote the crystallization of ( II ), inferred from the difficulty in crystallizing methyl α‐d ‐mannopyranosyl‐(1→3)‐β‐d ‐mannopyranoside despite repeated attempts. The conformational properties of the O‐acetyl side chain in ( II ) are similar to those observed in recent studies of peracetylated mannose‐containing oligosaccharides, having a preferred geometry in which the C2—H2 bond eclipses the C=O bond of the acetyl group. The C2—O2 bond in ( II ) elongates by ~0.02 Å upon O‐acetylation. The phi (?) and psi (ψ) torsion angles that dictate the conformation of the internal O‐glycosidic linkage in ( II ) are similar to those determined recently in aqueous solution by NMR spectroscopy for unacetylated ( II ) using the statistical program MA′AT, with a greater disparity found for ψ (Δ = ~16°) than for ? (Δ = ~6°).  相似文献   

11.
Glycoproteins in animal cells contain a variety of glycan structures that are added co‐ and/or posttranslationally to proteins. Of over 20 different types of sugar–amino acid linkages known, the two major types are N‐glycans (Asn‐linked) and O‐glycans (Ser/Thr‐linked). An abnormal mucin‐type O‐glycan whose expression is associated with cancer and several human disorders is the Tn antigen. It has a relatively simple structure composed of Nacetyl‐D ‐galactosamine with a glycosidic α linkage to serine/threonine residues in glycoproteins (GalNAcα1‐O‐Ser/Thr), and was one of the first glycoconjugates to be chemically synthesized. The Tn antigen is normally modified by a specific galactosyltransferase (T‐synthase) in the Golgi apparatus of cells. Expression of active T‐synthase is uniquely dependent on the molecular chaperone Cosmc, which is encoded by a gene on the X chromosome. Expression of the Tn antigen can arise as a consequence of mutations in the genes for T‐synthase or Cosmc, or genes affecting other steps of O‐glycosylation pathways. Because of the association of the Tn antigen with disease, there is much interest in the development of Tn‐based vaccines and other therapeutic approaches based on Tn expression.  相似文献   

12.
The synthesis of α‐sialosides is one of the most difficult reactions in carbohydrate chemistry and is considered to be both a thermodynamically and kinetically disfavored process. The use of acetonitrile as a solvent is an effective solution for the α‐selective glycosidation of N‐acetyl sialic acids. In this report, we report on the α‐glycosidation of partially unprotected N‐acetyl and N‐glycolyl donors in the absence of a nitrile solvent effect. The 9‐O‐benzyl‐N‐acetylthiosialoside underwent glycosidation in CH2Cl2 with a good α‐selectivity. On the other hand, the 4,7,8‐O‐triacetyl‐9‐O‐benzyl‐N‐acetylthiosialoside was converted to β‐sialoside as a major product under the same reaction conditions. The results indicate that the O‐acetyl protection of the sialyl donor was a major factor in reducing the α‐selectivity of sialylation. After tuning of the protecting groups of the hydroxy groups at the 4,7,8 position on the sialyl donor, we found that the 9‐O‐benzyl‐4‐O‐chloroacetyl‐N‐acetylthiosialoside underwent sialylation with excellent α‐selectivity in CH2Cl2. To demonstrate the utility of the method, straightforward synthesis of α(2,9) disialosides containing N‐acetyl and/or N‐glycolyl groups was achieved by using the two N‐acetyl and N‐glycolyl sialyl donors.  相似文献   

13.
The crystal structure of the lipoundecapeptide amphisin, presented here as the tetrahydrate, C66H114N12O20·4H2O, originating from non‐ribosomal biosynthesis by Pseudomonas sp. strain DSS73, has been solved to a resolution of 0.65 Å. The primary structure of amphisin is β‐hydroxy­decanoyl‐d ‐Leu‐d ‐Asp‐d ‐allo‐Thr‐d ‐Leu‐d ‐Leu‐d ‐Ser‐l ‐Leu‐d ‐Gln‐l ‐Leu‐l ‐Ile‐l ‐Asp (Leu is leucine, Asp is aspartic acid, Thr is threonine, Ser is serine, Gln is glut­amine and Ile is isoleucine). The peptide is a lactone, linking Thr4 Oγ to the C‐terminal. The stereochemistry of the β‐hydroxy acid is R. The peptide is a close analogue of the cyclic lipopeptides tensin and pholipeptin produced by Pseudomonas fluorescens. The structure of amphisin is mainly helical (310‐helix), with the cyclic peptide wrapping around a hydrogen‐bonded water mol­ecule. This lipopeptide is amphiphilic and has biosurfactant and antifungal properties.  相似文献   

14.
The title molecular salt, C8H12N+·C26H21O3, contains a dimeric indane pharmacophore that demonstrates potent anti‐inflammatory activity. The indane group of the anion exhibits some disorder about the α‐C atom, which appears common to many structures containing this group. A model to account for the slight disorder was attempted, but this was deemed unsuccessful because applying bond‐length constraints to all the bonds about the α‐C atom led to instability in the refinement. The absolute configuration was determined crystallographically as S,S,S by anomalous dispersion methods with reference to both the Flack parameter and Bayesian statistics on Bijvoet differences. The configuration was also determined by an a priori knowledge of the absolute configuration of the (1S)‐1‐phenylethanaminium counter‐ion. The molecules pack in the crystal structure to form an infinite two‐dimensional hydrogen‐bond network in the (100) plane of the unit cell.  相似文献   

15.
The title peptide, N‐benzyloxycarbonyl‐α‐aminoisobutyryl‐α‐aminoisobutyryl‐α‐aminoisobutyryl‐L‐alanine tert‐butyl ester or Z‐Aib‐Aib‐Aib‐L‐Ala‐OtBu (Aib is α‐aminoisobutyric acid, Z is benzyloxycarbonyl and OtBu indicates the tert‐butyl ester), C27H42N4O7, is a left‐handed helix with a right‐handed conformation in the fourth residue, which is the only chiral residue. There are two 4→1 intramolecular hydrogen bonds in the structure. In the lattice, molecules are hydrogen bonded to form columns along the c axis.  相似文献   

16.
The crystal structure of the title compound, C18H24N2O11, a GalNAc mimic containing an α‐gly­cosyl­oxy­succin­imide linkage, has been determined. The pyran­ose ring geometry is an almost perfect 4C1 chair. The torsion angle of the exocyclic hydroxy­methyl group is shown to be gauchetrans with respect to O1 and C4, respectively.  相似文献   

17.
Aberrantly truncated immature O-glycosylation in proteins occurs in essentially all types of epithelial cancer cells, which was demonstrated to be a common feature of most adenocarcinomas and strongly associated with cancer proliferation and metastasis. Although extensive efforts have been made toward the development of anticancer antibodies targeting MUC1, one of the most studied mucins having cancer-relevant immature O-glycans, no anti-MUC1 antibody recognises carbohydrates and the proximal MUC1 peptide region, concurrently. Here we present a general strategy that allows for the creation of antibodies interacting specifically with glycopeptidic neoepitopes by using homogeneous synthetic MUC1 glycopeptides designed for the streamlined process of immunization, antibody screening, three-dimensional structure analysis, epitope mapping and biochemical analysis. The X-ray crystal structure of the anti-MUC1 monoclonal antibody SN-101 complexed with the antigenic glycopeptide provides for the first time evidence that SN-101 recognises specifically the essential epitope by forming multiple hydrogen bonds both with the proximal peptide and GalNAc linked to the threonine residue, concurrently. Remarkably, the structure of the MUC1 glycopeptide in complex with SN-101 is identical to its solution NMR structure, an extended conformation induced by site-specific glycosylation. We demonstrate that this method accelerates dramatically the development of a new class of designated antibodies targeting a variety of “dynamic neoepitopes” elaborated by disease-specific O-glycosylation in the immunodominant mucin domains and mucin-like sequences found in intrinsically disordered regions of many proteins.

We developed new class of designated antibodies targeting of “dynamic neoepitopes” elaborated by disease-specific O-glycosylation at the immunodominant mucin domains.  相似文献   

18.
The tumor‐associated antigen mucin 1 (MUC1) has been pursued as an attractive target for cancer immunotherapy, but the poor immunogenicity of the endogenous antigen hinders the development of vaccines capable of inducing effective anti‐MUC1 immunodominant responses. Herein, we prepared synthetic anti‐MUC1 vaccines in which the hydrophilic MUC1 antigen was N‐terminally conjugated to one or two palmitoyl lipid chains (to form amphiphilic Pam‐MUC1 or Pam2‐MUC1). These amphiphilic lipid‐tailed MUC1 antigens were self‐assembled into liposomes containing the NKT cell agonist αGalCer as an adjuvant. The lipid‐conjugated antigens reshaped the physical and morphological properties of liposomal vaccines. Promising results showed that the anti‐MUC1 IgG antibody titers induced by the Pam2‐MUC1 vaccine were more than 30‐ and 190‐fold higher than those induced by the Pam‐MUC1 vaccine and the MUC1 vaccine without lipid tails, respectively. Similarly, vaccines with the TLR1/2 agonist Pam3CSK4 as an adjuvant also induced conjugated lipid‐dependent immunological responses. Moreover, vaccines with the αGalCer adjuvant induced significantly higher titers of IgG antibodies than vaccines with the Pam3CSK4 adjuvant. Therefore, the non‐covalent assembly of the amphiphilic lipo‐MUC1 antigen and the NKT cell agonist αGalCer as a glycolipid adjuvant represent a synthetically simple but immunologically effective approach for the development of anti‐MUC1 cancer vaccines.  相似文献   

19.
Live cell imaging of protein‐specific glycoforms is important for the elucidation of glycosylation mechanisms and identification of disease states. The currently used metabolic oligosaccharide engineering (MOE) technology permits routinely global chemical remodeling (GCM) for carbohydrate site of interest, but can exert unnecessary whole‐cell scale perturbation and generate unpredictable metabolic efficiency issue. A localized chemical remodeling (LCM) strategy for efficient and reliable access to protein‐specific glycoform information is reported. The proof‐of‐concept protocol developed for MUC1‐specific terminal galactose/N ‐acetylgalactosamine (Gal/GalNAc) combines affinity binding, off‐on switchable catalytic activity, and proximity catalysis to create a reactive handle for bioorthogonal labeling and imaging. Noteworthy assay features associated with LCM as compared with MOE include minimum target cell perturbation, short reaction timeframe, effectiveness as a molecular ruler, and quantitative analysis capability.  相似文献   

20.
The annelation of 1,2,3‐thiadiazole rings was accomplished by the reaction of N‐acylhydrazone 2a bearing an adjacent α‐methyl with thionyl chloride to give α‐chloro‐N‐methyl‐1,2,3‐thiadiazole‐4‐acetamide 4 and was demonstrated by the X‐ray crystal structure of its derivative 5a. A novel series of α‐substituted phenoxy‐N‐methyl‐1,2,3‐thiadiazole‐4‐acetamide 5 were synthesized through the reaction of the compound 4 and phenols. The results of bioassays show that the title compounds exhibit good anti‐HBV activities. The crystal of compound 5a , N‐methyl‐α‐2‐bromophenyl‐1,2,3‐thiadiazole‐4‐acetamide, has been prepared and determined by X‐ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号