首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Electroanalysis》2003,15(21):1707-1712
Construction of a highly stable covalently attached multilayer film electrode containing iron porphyrin was achieved by UV irradiation of ionic self‐assembled multilayer films of diazo‐resins (DAR) and anionic Fe(III)tetrakis(p‐sulfonatophenyl)porphyrin (FeTSPP). The multilayer films had been characterized by UV, IR spectra and cyclic valtammetry. The electrocatalytic transformation of sulfite to SO42? by the multilayer film electrode containing FeTSPP was investigated. In 0.1 M NH4OH? NH4Cl buffer solution (pH 8.74) and 0.1 M borate buffer solution (pH 9.18) the electrocatalytic oxidation of sulfite through the multilayer film electrode can be performed. However, in acetate buffer solution (pH 4.0) the electrocatalytic reduction of sulfite by the multilayer film electrode had also good activity. The modified electrode also exhibited a fast response and good stability.  相似文献   

2.
The molecular crystals [Li{N(SO2CF3)2}{C6H4(OCH3)2}2] and [Li{N(SO2CF3)2}{C6F2H2(OCH3)2}2] with solid‐state lithium ion conductivity have been synthesized by the addition of two equivalents of 1,2‐dimethoxybenzene or 1,2‐difluoro‐4,5‐dimethoxybenzene to Li{N(SO2CF3)2}, respectively. Single‐crystal X‐ray diffraction analysis revealed the formation of ionic conduction paths with an ordered arrangement of lithium ions in these crystal structures, afforded by the self‐ assembled stacking of molecular‐based channels consisting of N(SO2CF3)2 anion and 1,2‐dimethoxybenzene frameworks as a result of intermolecular aromatic and hydrogen interactions. These compounds show selective lithium ion conductivity as the anions behave as a component unit of the conduction paths. The relationship between the crystal structure and ionic conductivity of the molecular crystals provides a clue to the development of novel solid electrolytes based on molecular crystals showing fast and selective lithium ion conduction.  相似文献   

3.
The self‐healing of zinc‐ion batteries (ZIBs) will not only significantly improve the durability and extend the lifetime of devices, but also decrease electronic waste and economic cost. A poly(vinyl alcohol)/zinc trifluoromethanesulfonate (PVA/Zn(CF3SO3)2) hydrogel electrolyte was fabricated by a facile freeze/thaw strategy. PVA/Zn(CF3SO3)2 hydrogels possess excellent ionic conductivity and stable electrochemical performance. Such hydrogel electrolytes can autonomously self‐heal by hydrogen bonding without any external stimulus. All‐in‐one integrated ZIBs can be assembled by incorporating the cathode, separator, and anode into hydrogel matrix since the fabrication of PVA/Zn(CF3SO3)2 hydrogel is a process of converting the liquid to quasi‐solid state. The ZIBs show an outstanding self‐healing and can recover electrochemical performance completely even after several cutting/healing cycles.  相似文献   

4.
The structure of trithallium hydrogen bis­(sulfate), Tl3H(SO4)2, in the super‐ionic phase has been analyzed by Rietveld analysis of the X‐ray powder diffraction pattern. Atomic parameters based on the isotypic Rb3H(SeO4)2 crystal in space group Rm in the super‐ionic phase were used as the starting model, because it has been shown from the comparison of thermal and electric properties in Tl3H(SO4)2 and M3H(SO4)2 type crystals (M = Rb, Cs or NH4) that the room‐temperature Tl3H(SO4)2 phase is isostructural with the high‐temperature Rm‐symmetry M3H(SO4)2 crystals. The structure was determined in the trigonal space group Rm and the Rietveld refinement shows that an hydrogen‐bond O—­H?O separation is slightly shortened compared with O—H?O separations in isotypic M3H(SeO4)2 crystals. In addition, it was found that the distortion of the SO4 tetrahedra in Tl3H(SO4)2 is less than that in isotypic crystals.  相似文献   

5.
The self‐diffusion coefficients of each component in mixtures of 1‐butyl‐3‐methylimidazolium bis(trifluoromethanesulfonyl)imide ([Bmim][N(SO2CF3)2]) and acetonitrile were determined. The results suggest that the hydrodynamic boundary conditions change from “stick” to “slip” as the solvent composition transitions from “ionic liquid dissolved in acetonitrile” (χIL<0.4) to “acetonitrile dissolved in ionic liquid” (χIL>0.4). At higher χIL, the acetonitrile species are affected by “cage” and “jump” events, as the acetonitrile molecules reside nearer to the charged centre on the ions than in the “non‐polar” regions. The self‐diffusion coefficients of hexan‐1‐amine, dipropylamine, 1‐hexanol and dipropylether in mixtures of [Bmim][N(SO2CF3)2] and acetonitrile were determined. In general, the nitrogen‐containing solutes were found to diffuse slower than the oxygen‐containing solutes; this indicates that there are greater ionic liquid–N interactions than ionic liquid–O interactions. This work demonstrates that the self‐diffusion coefficients of species can provide valuable information about solvent–solvent and solvent–solute interactions in mixtures containing an ionic liquid.  相似文献   

6.
Mononuclear coordination compounds of the type [Pd(NH2trz)4]2+ with the counterions chloride, nitrate, trifluoromethanesulfonate, and methanesulfonate were synthesized and their structures identified with single‐crystal X‐ray diffraction. In case of the synthesis with methanesulfonate as the counterion the dominant product was of the generic formula [Pd2(NH2trz)3](CH3SO3)4, and the complex [Pd(NH2trz)4](CH3SO3)2 only emerged as a byproduct. While the structure of the byproduct could be analyzed by single‐crystal X‐ray diffraction, suitable crystals of the main product [Pd2(NH2trz)3](CH3SO3)4 could not be obtained. However, stoichiometry implies a polynuclear nature with NH2trz present in the rare μ3‐η111 coordination type, i.e. with NH2trz molecules coordinating to three palladium atoms. Accordingly, identification of solids by single‐crystal analysis alone can be misleading in particular with NH2trz as a ligand due to its versatile coordination behavior. Finally, analysis by differential scanning calorimetry (DSC) revealed that the complexes were thermally stable (the onset of decomposition well above 100 °C), with [Pd2(NH2trz)3](CH3SO3)4 being the most stable compound (onset of decomposition at 204 °C).  相似文献   

7.
A novel trilithium compound, Li3[B(C6H4O2){O(CH2CH2O)3CH3}2][N(SO2CF3)2]2 ( 1 ‐2.0), with solid‐state ionic conductivity was synthesized. The crystal structure of 1 ‐2.0 consists of the one‐dimensional ionic conduction paths. The paths were afforded as a result of the self‐assembled stacking of the component molecules of 1 ‐2.0 with channel structures containing lithium ions. In this supramolecule, one lithium ion holds the component molecules in specific positions to construct a supramolecular structure with thermally stable ionic conduction paths and the others behave as carrier ions exhibiting selective lithium‐ion conductivity. Owing to the existence of both roles for the lithium ions, this electrolyte shows selective lithium‐ion conductivity.  相似文献   

8.
The design and synthesis of tripodal ligands 1 – 3 based upon the N‐methyl‐1,3,5‐benzenetricarboxamide platform appended with three aryl urea arms is reported. This ligand platform gives rise to highly preorganized structures and is ideally suited for binding SO42? and H2PO4? ions through multiple hydrogen‐bonding interactions. The solid‐state crystal structures of 1 – 3 with SO42? show the encapsulation of a single anion within a cage structure, whereas the crystal structure of 1 with H2PO4? showed that two anions are encapsulated. We further demonstrate that ligand 4 , based on the same platform but consisting of two bis‐urea moieties and a single ammonium moiety, also recognizes SO42? to form a self‐assembled capsule with [4:4] SO42?: 4 stoichiometry in which the anions are clustered within a cavity formed by the four ligands. This is the first example of a self‐sorting self‐assembled capsule where four tetrahedrally arranged SO42? ions are embedded within a hydrophobic cavity.  相似文献   

9.
《Analytical letters》2012,45(18):3373-3382
Abstract

This letter demonstrates a selective NH4 + detection using a synthesized thiazole benzo crownether ethylamine‐lipoic acid conjugate (1) monolayer. A self‐assembled monolayer (SAM) of 1 was formed on Au surface and well characterized by atomic‐force microscopy, Fourier transform infrared reflection absorption spectroscopy and cyclic voltammetry (CV). A good selectivity for NH4 + sensing was observed in a range of 1.0×10?1 to 1.0×10?6 M by surface plasmon resonance.  相似文献   

10.
The effects of inorganic mono- and divalent salts of different types on how the cation polyelectrolyte polyallylamine hydrochloride (PAA) binds with the oligomer enzyme urease were studied. It was shown that in solutions of the monovalent salts NaCl, KCl, and NH4Cl, polyelectrolyte-protein complexes formed by electrostatic interactions, which decreased monotonically as the salt concentrations increased according to the classic law of statistical physics, correlating the Debye radius with the ionic strength of the solution. In solutions of the divalent salts Na2SO4 and (NH4)2SO4, the efficiency of the formation of the polyelectrolyte-protein complexes changed abruptly (the enzyme was drastically activated) at low salt concentrations (∼0.6–0.8 mM), which was not consistent with the classic theory of charge interactions in solutions with different ionic strengths. Turbidimetric titration at different salt concentrations in the given range revealed a high aggregative ability for sulfates and low ability for chlorides. It was concluded that the anomalies in the concentration dependence of the enzyme activity and aggregative ability were related to the formation of stable bonds PAA to the divalent SO42− anion, which increased drastically when the ratio of anion concentration to the number of positively charged PAA monomers in solution reached 1: 2.  相似文献   

11.
Sol–gel chemistry was adeptly exploited to fabricate nanoporous membranes by cooperative self‐assembly of modified triblock copolymer (SEBS‐NH2) and titania network. Reinforcement of the matrix was achieved by hydrolytic condensation of tetraisopropoxytitanate without/with compatiblizing agent (3‐glycidyloxypropyl triethoxysilane), yielding two hybrid systems. Incorporation of different proportions of TiO2 provoked well‐built variations in morphology of compatiblized SEBS‐NH2/TiO2 nanocomposites. At low titania loading, spherical nanoparticles were found well‐dispersed in regimented triblock domains while addition of higher amounts of TiO2 generated nanoporous membranes by mutual self‐assembling of matrix and the reinforcement. Relative improvement of tensile and thermal properties over uncompatiblized nanocomposites was observed owing to enhanced interfacial interactions. Eventually, a combination of the two phases (17.5 wt. % titania in SEBS‐NH2) demonstrated ample mechanical reinforcement, thermal and morphological profiles, ensuing robust self‐assembled nanostructures. Forthcoming prospects are envisioned as well. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Reference electrodes for room temperature ionic liquid (RTIL) applications were constructed that have a known and reproducible potential versus the ferrocene/ferrocenium couple. They are based on reference electrodes of the first kind, Ag/Ag+ couple type, or of the second kind, based on Ag/AgCl in M+Cl?. The former uses AgNO3 salt and the latter tetrabutylammonium chloride, Bu4NCl, dissolved in acetonitrile which are then introduced to the ionic liquid of choice for a final concentration of 0.1 M. The reference electrodes can be easily and reproducibly constructed. An ionic contact of these reference systems with the test electrolyte was made using an asbestos fiber liquid junction. The internal compartment of the reference system was filled with the same ionic liquid as used for the electrochemical experiment. The performance of these reference electrodes was tested in selected ionic liquids using the ferrocene/ferrocenium redox couple. The stability, reproducibility, and temperature behavior of the two reference systems have been characterized in the following ionic liquids: 1‐butyl‐3‐methylimidazolium tetrafluoroborate (BMIBF4), 1‐butyl‐3‐methylimidazolium bis(trifluoromethanesulfonyl)imide (BMI(CF3SO2)2N), and 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIPF6). It has been found that the formal potentials of the examined reference systems are stable over several days. There is a linear relationship for the temperature studied in the range from 25 to 60 °C.  相似文献   

13.
Considering the instability and low photoluminescence quantum yield (PLQY) of blue‐emitting perovskites, it is still challenging and attractive to construct single crystalline hybrid lead halides with highly stable and efficient blue light emission. Herein, by rationally introducing d10 transition metal into single lead halide as new structural building unit and optical emitting center, we prepared a bimetallic halide of [(NH4)2]CuPbBr5 with new type of three‐dimensional (3D) anionic framework. [(NH4)2]CuPbBr5 exhibits strong band‐edge blue emission (441 nm) with a high PLQY of 32 % upon excitation with UV light. Detailed photophysical studies indicate [(NH4)2]CuPbBr5 also displays broadband red light emissions derived from self‐trapped states. Furthermore, the 3D framework features high structural and optical stabilities at extreme environments during at least three years. To our best knowledge, this work represents the first 3D non‐perovskite bimetallic halide with highly efficient and stable blue light emission.  相似文献   

14.
From the reaction of uranium hexafluoride UF6 with dry liquid ammonia, the [UF7(NH3)]3? anion and the [UF4(NH3)4] molecule were isolated and identified for the first time. They are found in signal‐green crystals of trisammonium monoammine heptafluorouranate(IV) ammonia (1:1; [NH4]3[UF7(NH3)] ? NH3) and emerald‐green crystals of tetraammine tetrafluorouranium(IV) ammonia (1:1; [UF4(NH3)4] ? NH3). [NH4]3[UF7(NH3)] ? NH3 features discrete [UF7(NH3)]3? anions with a coordination geometry similar to a bicapped trigonal prism, hitherto unknown for UIV compounds. The emerald‐green [UF4(NH3)4] ? NH3 contains discrete tetraammine tetrafluorouranium(IV) [UF4(NH3)4] molecules. [UF4(NH3)4] ? NH3 is not stable at room temperature and forms pastel‐green [UF4(NH3)4] as a powder that is surprisingly stable up to 147 °C. The compounds are the first structurally characterized ammonia complexes of uranium fluorides.  相似文献   

15.
Infrared and Raman spectra of NH4Ce(SO4)2·4H2O, NH4La(SO4)2·4H2O and the deuterated compounds NH4Ce(SO4)2·4D2O and NH4La(SO4)2·4D2O have been analysed. Splittings indicating the presence of two types of SO4 ions are not observed. The SO bond strengths of the different SO4 units are not significantly different. The SO4 ion is distorted in these compounds. Deuteration causes changes in the SO4 bond strength. Three crystallographically distinct water molecules exist in the unit cell.  相似文献   

16.
Rare-earth ammonium sulfate octahydrates of R2(SO4)3·(NH4)2SO4·8H2O (R=Pr, Nd, Sm, and Eu) were synthesized by a wet process, and the stable temperature region for the anhydrous R2(SO4)3·(NH4)2SO4 form was clarified by thermogravimetry/differential thermal analysis, infrared, Raman, and electrical conductivity measurements. Detailed characterization of these double salts demonstrated that the thermal stability of anhydrous R2(SO4)3·(NH4)2SO4 is different between the Pr, Nd salts and the Sm, Eu salts, and the thermal decomposition behavior of these salts was quite different from the previous reports.  相似文献   

17.
In this paper, self‐assembled Prussian blue nanoparticles (PBNPs) on carbon ceramic electrode (CCE) were developed as a high sensitive hydrogen peroxide (H2O2) electrochemical sensor. The PBNPs film was prepared by a simple dipping method. The morphology of the PBNPs‐modified CCE was characterized by scanning electron microscopy (SEM). The self‐assembled PB film exhibited sufficient mechanical, electrochemical stability and high sensitivity in compare with other PB based H2O2 sensors. The sensor showed a good linear response for H2O2 over the concentration range 1 μM–0.26 mM with a detection limit of ca. 0.7 μM (S/N=3), and sensitivity of 754.6 mA M?1 cm?2. This work demonstrates the feasibility of self‐assembled PBNPs‐modified CCE for practical sensing applications.  相似文献   

18.
Mixed salts (NH4)2SO4·2NH4NO3 (1) and (NH4)2SO4·3NH4NO3 (2) were synthesized and studied by X-ray diffraction analysis. The unit cell parameters of these salts were determined and their crystal structures were solved. The thermal stability of the salts was studied by differential scanning calorimetry and thermogravimetric analysis. The temperatures and enthalpies of incongruent melting of compounds 1 and 2 were determined. The enthalpies of formation from the constituent salts were estimated.  相似文献   

19.
Improving the thermal stability of nanocelluloses is important for practical applications such as melt compounded nanocellulose‐reinforced polymer composites and flexible substrates for nanocellulose‐containing electronic devices. Here, we report optimum conditions for a straightforward surface modification strategy for improving the thermal stability of 2,2,6,6‐tetramethypiperidine‐1‐oxyl (TEMPO)‐oxidized cellulose nanofibrils (TOCNs); the heat‐induced conversion of TOCN alkyl ammonium carboxylates to amides. Different amine‐terminated compounds (R‐NH2) were grafted onto the surface of TOCNs under aqueous conditions. The influences of R‐NH2 molecular weight, R‐NH2/TOCN‐COOH molar ratio, and thermal stability of R‐NH2 on the properties of the grafted TOCN films were investigated through infrared spectroscopy and thermogravimetric analysis. For maximum thermal improvement of up to 90 °C, complete ionic bonding of TOCN carboxy groups with R‐NH2 was required, as well as proper selection of the R‐NH2 compound. A controlled heating process was also needed to achieve effective ionic‐to‐amide bond conversion. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1750–1756  相似文献   

20.
Lead‐free zero‐dimensional (0D) organic‐inorganic metal halide perovskites have recently attracted increasing attention for their excellent photoluminescence properties and chemical stability. Here, we report the synthesis and characterization of an air‐stable 0D mixed metal halide perovskite (C8NH12)4Bi0.57Sb0.43Br7?H2O, in which individual [BiBr6]3? and [SbBr6]3? octahedral units are completely isolated and surrounded by the large organic cation C8H12N+. Upon photoexcitation, the bulk crystals exhibit ultra‐broadband emission ranging from 400 to 850 nm, which originates from both free excitons and self‐trapped excitons. This is the first example of 0D perovskites with broadband emission spanning the entire visible spectrum. In addition, (C8NH12)4Bi0.57Sb0.43Br7?H2O exhibits excellent humidity and light stability. These findings present a new direction towards the design of environmentally‐friendly, high‐performance 0D perovskite light emitters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号