首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
B‐Methoxy β‐(4‐methoxyphenylsulfinyl)subporphyrin and B‐phenyl β‐(4‐methoxyphenylsulfinyl)subporphyrin were synthesized by oxidation of the corresponding β‐sulfanylsubporphyrins with m‐chloroperbenzoic acid and were separated into diastereomers, respectively. B‐Methoxy subporphyrin diastereomers were interconverted to each other in methanol or ethanol, whereas such interconversion was not observed for B‐phenyl subporphyrin diastereomers even at high temperature. Diastereomeric interconversions of B‐methoxy subporphyrins were dramatically accelerated by addition of trifluoroacetic acid. These results suggest that the diastereomeric interconversions of B‐methoxy subporphyrins, namely, their bowl inversions, proceed via a mechanism involving protonation‐induced generation of subporphyrin borenium cations followed by nucleophilic attacks by alcohols.  相似文献   

2.
A meso–meso β‐β β‐β triply linked subporphyrin dimer 6 was synthesized by stepwise reductive elimination of β‐to‐β doubly PtII‐bridged subporphyrin dimer 9 . Dimer 6 was characterized by spectroscopic and electrochemical measurements, theoretical calculations, and picosecond time‐resolved transient absorption spectroscopy. X‐ray diffraction analysis reveals that 6 has a bowl‐shaped structure with a positive Gaussian curvature. Despite the curved structure, 6 exhibits a remarkably red‐shifted absorption band at 942 nm and a small electrochemical HOMO–LUMO gap (1.35 eV), indicating an effectively conjugated π‐electronic network.  相似文献   

3.
Acetylene and trans‐ethylene bridged BIII‐subporphyrin dimers were synthesized by cross‐coupling reactions of meso‐bromo BIII subporphyrin. These dimers display perturbed and red‐shifted absorption spectra reaching around 750 nm and fluorescence reaching at around 850 nm with high quantum yields of 0.39 and 0.47, respectively. DFT calculations have revealed that the HOMOs and the LUMOs of both dimers are spread over the two subporphyrin units as an indication of effective conjugation between the two subporphyrin units. The large Stokes shifts and characteristic pico‐second time‐resolved transient absorption spectra indicated that the S1‐states of the dimers relax with structural changes, which are larger for the trans‐ethylene bridged dimer.  相似文献   

4.
7,8‐Dehydropurpurin has attracted much attention owing to the dual 18π‐ and 20π‐electron circuits in its macrocyclic conjugation. The two‐fold Pd‐catalyzed [3+2] annulation of meso‐bromoporphyrin with 1,4‐diphenylbutadiyne furnished 7,8‐dehydropurpurin dimers. The 8a,8a‐linked dimer displays a red‐shifted and enhanced absorption band in the NIR region and a small electrochemical HOMO–LUMO band gap as a consequence of efficient conjugation between the two coplanar 7,8‐dehydropurpurin units. Treatment of this dimer with N‐bromosuccinimide in chloroform and ethanol gave β‐to‐β vinylene‐bridged porphyrin dimers. Owing to the highly constrained conformations, these dimers exhibit perturbed absorption spectra, small Stokes shifts, and high fluorescence quantum yields.  相似文献   

5.
meso‐Free BIII 5,10‐bis(p‐dimethylaminophenyl)subporphyrins were synthesized. They display red‐shifted absorption and fluorescence spectra, bathochromic behaviors in polar solvents, a high fluorescence quantum yield (ΦF=0.57), and a small HOMO–LUMO gap mainly due to destabilized HOMO as compared with meso‐free BIII 5,10‐diphenylsubporphyrin. This subporphyrin serves as a nice precursor of various meso‐substituted BIII subporphyrins such as BIII meso‐nitrosubporphyrin, BIII meso‐aminosubporphyrin, and meso‐meso’ linked BIII azosubporphyrin dimer. Reactions of meso‐free BIII subporphyrins with NBS or bis(2,4,6‐trimethylpyridine)bromonium hexafluorophosphate gave meso‐meso′ linked subporphyrin dimers, often as a major product along with meso‐bromosubporphyrins.  相似文献   

6.
Boron arylations of B‐(methoxo)triphenylsubporphyrin have been developed with a combined use of ArZnI?LiCl and trimethylsilyl chloride. Aryl zinc reagents bearing bromo, cyano, amide, and ester groups can be employed for the B‐arylation reaction to provide the corresponding B‐arylated subporphyrins in moderate yields. Postmodifications of B‐arylated subporphyrins have been demonstrated without loss of the B?C bond. These modifications include conversion of the cyano group into a benzoyl group with PhMgBr, hydrolysis of the ester group to give B‐(4‐carboxyphenyl)subporphyrin, and Pd‐catalyzed Suzuki–Miyaura coupling of the 4‐bromophenyl group to give a 1,4‐phenylene‐bridged subporphyrin–ZnII porphyrin hybrid that displays intramolecular excitation energy transfer from the subporphyrin to the porphyrin. The newly synthesized B‐arylated subporphyrins have been fully characterized by NMR, UV/Vis absorption and fluorescence spectroscopies, mass spectrometry, electrochemical measurements, and X‐ray diffraction analysis.  相似文献   

7.
A series of doubly β‐to‐β bridged cyclic ZnII porphyrin arrays were prepared by a stepwise Suzuki–Miyaura coupling reaction of borylated ZnII porphyrin with different bridge groups. The coupling of the building block of β,β′‐diboryl ZnII porphyrin 1 with different bridges provided the doubly β‐to‐β carbazole‐bridged ZnII porphyrin array 3 , the fluorene‐bridged ZnII porphyrin array 5 , the fluorenone‐bridged ZnII porphyrin array 7 , and the three‐carbazole‐bridged ZnII porphyrin ring 8 . The structural assignment of 3 was confirmed by the X‐ray diffraction analysis, which revealed a highly symmetrical and remarkably bent syn‐form structure. The incorporation of bridge units with different electronic effects results in different photophysical properties of the cyclic ZnII porphyrin arrays. Comprehensive photophysical studies demonstrate that the electron‐withdrawing bridge fluorenone has the largest electronic interaction with the ZnII porphyrin unit among the series, thus resulting in the highest two‐photon absorption cross‐section values (σ(2)) of 6570±60 GM for 7 . The present work provides a new strategy for developing porphyrin‐based optical materials.  相似文献   

8.
As potential inhibitors of penicillin‐binding proteins (PBPs), we focused our research on the synthesis of non‐traditional 1,3‐bridged β‐lactams embedded into macrocycles. We synthesized 12‐ to 22‐membered bicyclic β‐lactams by the ring‐closing metathesis (RCM) of bis‐ω‐alkenyl‐3(S)‐aminoazetidinone precursors. The reactivity of 1,3‐bridged β‐lactams was estimated by the determination of the energy barrier of a concerted nucleophilic attack and lactam ring‐opening process by using ab initio calculations. The results predicted that 16‐membered cycles should be more reactive. Biochemical evaluations against R39 DD‐peptidase and two resistant PBPs, namely, PBP2a and PBP5, revealed the inhibition effect of compound 4d , which featured a 16‐membered bridge and the N‐tert‐butyloxycarbonyl chain at the C3 position of the β‐lactam ring. Surprisingly, the corresponding bicycle, 12d , with the PhOCH2CO side chain at C3 was inactive. Reaction models of the R39 active site gave a new insight into the geometric requirements of the conformation of potential ligands and their steric hindrance; this could help in the design of new compounds.  相似文献   

9.
B-Phenyl BIII subporphyrin-α-diones prepared in a three-step reaction sequence from the parent subporphyrin were condensed with 1,2-diaminobenzenes to give the corresponding quinoxaline-fused subporphyrins in variable yields. Quinoxaline-fused B-phenyl-5,10,15-triphenyl BIII subporphyrin was transformed to the corresponding subporphyrin-α-dione in the same three-step reaction sequence, which was then condensed with 1,2-diaminobenzene to give doubly quinoxaline-fused subporphyrin. These quinoxaline-fused subporphyrins exhibit redshifted absorption and fluorescence spectra compared with the parent one. A singly quinoxaline-fused subporphyrin bearing three meso-bis(4-dimethylaminophenyl)aminophenyl substituents shows blueshifted fluorescence in less polar solvent, which has been ascribed to emission associated with charge recombination of intramolecular charge transfer (CT) state.  相似文献   

10.
A novel approach has been developed for the synthesis of β‐arylacyl/β‐heteroarylacyl‐β‐alkylidine malonates in moderate to good yields by the reaction of Stork aryl and heteroaryl enamine with β‐chloroalkylidene malonates. The reaction involves conjugate (Michael) addition of Stork enamine on β‐chloroalkylidene malonates and elimination of chloride ion. These Michael adducts were utilized as intermediates for the synthesis of highly substituted 1,4‐dialkyl‐2‐oxo‐6‐aryl/hetreoaryl‐1,2‐dihydro‐pyridine‐3‐carboxylic acid ethyl esters via 5 + 1 ring annulation protocol.  相似文献   

11.
The first examples of β–β directly linked, acetylene‐bridged, and butadiyne‐bridged 5,15‐diazaporphyrin dimers have been prepared by palladium‐catalyzed coupling reactions of nickel(II) and copper(II) complexes of 3‐bromo‐10,20‐dimesityl‐5,15‐diazaporphyrin (mesityl=2,4,6‐trimethylphenyl). The effects of the linking modes and meso‐nitrogen atoms on the structural, optical, electrochemical, and magnetic properties of the distributed π systems were investigated by using X‐ray crystallography, UV/Vis absorption spectroscopy, DFT calculations, cyclic voltammetry, and ESR spectroscopy. Both the electronic and steric effects of the meso‐nitrogen atoms play an important role in the highly coplanar geometry of the directly linked dimers. The direct β–β linkage produces enhanced π conjugation and electron‐spin coupling between the two diazaporphyrin units.  相似文献   

12.
A2B‐type B‐methoxy subporphyrins 3 a – g and B‐phenyl subporphyrins 7 a – c , e , g bearing meso‐(2‐substituted)aryl substituents are synthesized, and their rotational dynamics are examined through variable‐temperature (VT) 1H NMR spectroscopy. In these subporphyrins, the rotation of meso‐aryl substituents is hindered by a rationally installed 2‐substituent. The rotational barriers determined are considerably smaller than those reported previously for porphyrins. Comparison of the rotation activation parameters reveals a variable contribution of ΔH and ΔS in ΔG. 2‐Methyl and 2‐ethyl groups of the meso‐aryl substituents in subporphyrins 3 e , 3 f , and 7 e induce larger rotational barriers than 2‐alkoxyl substituents. The rotational barriers of 3 g and 7 g are reduced by the presence of the 4‐dibenzylamino group owing to its ability to stabilize the coplanar rotation transition state electronically. The smaller rotational barriers found for B‐phenyl subporphyrins than for B‐methoxy subporphyrins indicate a negligible contribution of SN1‐type heterolysis in the rotation of meso‐aryl substituents.  相似文献   

13.
β‐Aminoalkylboronic acids are bioisosteres of the pharmaceutically important class of β‐amino acids but few stereoselective methods exist for their preparation. The 1,2‐addition of lithiated 1,1‐diborylalkanes onto chiral Ntert‐butanesulfinyl aldimines produces β‐sulfinimido gem‐bis(boronates) in good to excellent yields with high diastereoselectivity. The optimized conditions involve the use of rubidium fluoride and water, and are compatible with functionalized alkyl, aryl, alkenyl, and alkynyl substituents. Under these conditions, the geminal quaternary alkyl bis(pinacolatoboryl) intermediates undergo a highly diastereoselective monoprotodeboronation to afford a wide range of syn‐α,β‐disubstituted β‐aminoalkylboronates. This novel application of protodeboronation chemistry was shown to result from a kinetically controlled, diastereotopic‐group‐selective B?C bond protolysis dictated by the configuration of the adjacent stereogenic C?N center. Facile acidic cleavage of the sulfinimide auxiliary produces the free aminoboronates with high enantiomeric purity.  相似文献   

14.
Alkyl (Z)‐2‐[(E)‐2‐ethoxycarbonyl‐2‐(2‐pyridinyl)ethenyl]amino‐3‐dimethylaminopropenoates 7 and 8 were prepared from ethyl 2‐pyridinylacetate (1) in two steps. Substitution of the dimethylamino group with alkyl‐, aryl‐, or heteroarylamines afforded the corresponding β‐alkyl‐ 22–24 , β‐aryl‐ 25–35 , and β‐herteroaryl‐amino‐α,β‐didehydro‐α‐amino acid 36 and 37 derivatives, intermediates for further preparation of various heterocyclic systems. The orientation around both double bonds were determined by various nmr techniques.  相似文献   

15.
Effective peripheral fabrication methods of meso‐aryl‐substituted subporphyrins were explored for the first time. Hexabrominated subporphyrins 2 were prepared quantitatively from the bromination of subporphyrins 1 with bromine. Hexaphenylated subporphyrins 3 and hexaethynylated subporphyrins 4 and 5 were synthesized by Suzuki–Miyaura coupling and Stille coupling, respectively, in good yields. X‐ray crystal structures of 2 b , 3 b , 4 b , and 5 a revealed preservation of the bowl‐shaped bent structures with bowl depths similar to that of 1 . Hexaethynylated subporphyrins exhibit large two‐photon‐absorption cross‐sections due to effective delocalization of the conjugated network to the ethynyl substituents.  相似文献   

16.
We report here a general four‐component synthetic procedure for the preparation of β‐boryl ketones and β‐boryl vinyl esters. Joint catalyzed by palladium and copper catalysts, borocarbonylative reaction between vinylarenes, aryl halides/triflates, B2Pin2, and carbon monoxide proceed successfully. A variety of synthetically useful β‐boryl ketones were synthesized in good to high yields by using aryl iodides as the substrates. It is noteworthy that when aryl triflates were applied as the starting materials, β‐boryl vinyl esters were synthesized in a similar manner and with broad functional group tolerance. A rational mechanism for this reaction was also proposed.  相似文献   

17.
Alkynyl‐substituted 3H‐corrole 9 a was converted to [3]cumulenic 2H‐corrole 10 a by treatment with trimethylsilyl chloride (TMSCl), and 1,3‐butadiyne‐bridged 3H‐corrole dimer 11 b was transformed into [5]cumulene‐bridged 2H‐corrole dimer 12 b by oxidation with PbO2. Both 10 a and 12 b were metalated to form ZnII complexes 10 a‐Zn and 12 b‐Zn . The structures of 10 a‐Zn and 12 b‐Zn show planar conformations with bond‐length alternations that are analogous to those of tetraaryl [n]cumulenes. The cumulenic corrole dimers 12 b and 12 b‐Zn display large NIR absorption bands in the range of 700–1400 nm (maximum ϵ≈1.0×105 m −1 cm−1) owing to the effective π‐conjugation between the two corrole units through the [5]cumulene bridge.  相似文献   

18.
Peripherally hexachlorinated meso‐triphenyl subporphyrin 4 was prepared by chlorination of meso‐triphenyl subporphyrin 1 with N‐chlorosuccinimide and was effectively transformed to hexasulfanylated subporphyrins 5 – 8 via nucleophilic aromatic substitution (SNAr) reactions with the corresponding thiols under basic conditions. The structures of 5 – 8 have been all well characterized by single‐crystal X‐ray analysis. 1H NMR studies indicated that the meso‐phenyl substituents undergo restricted rotation for 5 – 8 , while the β‐sulfanyl substituents are conformationally flexible in 5 , 6 , and 8 , and are strictly regulated to an anti‐conformation in 7 . Judging from the absorption spectra, the oxidation and reduction potentials, and the DFT calculations, the substituent effects decrease in the order of 5 > 6 > 7 > 8 . Subporphyrin 8 effectively captures C60 in a 1:1 manner in [D8]toluene solution.  相似文献   

19.
The asymmetric Michael reaction of nitroalkanes and β,β‐disubstituted α,β‐unsaturated aldehydes was catalyzed by diphenylprolinol silyl ether to afford 1,4‐addition products with an all‐carbon quaternary stereogenic center with excellent enantioselectivity. The reaction is general for β‐substituents such as β‐aryl and β‐alkyl groups, and both nitromethane and nitroethane can be employed. The addition of nitroethane is considered a synthetic equivalent of the asymmetric Michael reaction of ethyl and acetyl substituents by means of radical denitration and Nef reaction, respectively. The short asymmetric synthesis of (S)‐ethosuximide with a quaternary carbon center was accomplished by using the present asymmetric Michael reaction as the key step. The reaction mechanism that involves the E/Z isomerization of α,β‐unsaturated aldehydes, the retro‐Michael reaction, and the different reactivity between nitromethane and nitroethane is discussed.  相似文献   

20.
3‐Alkyl/aryl‐3‐ureido‐1H,3H‐quinoline‐2,4‐diones ( 2 ) and 3a‐alkyl/aryl‐9b‐hydroxy‐3,3a,5,9b‐tetrahydro‐1H‐imidazo[4,5‐c]quinoline‐2,4‐diones ( 3 ) react in boiling concentrated HCl to give 5‐alkyl/aryl‐4‐(2‐aminophenyl)‐1,3‐dihydro‐2H‐imidazol‐2‐ones ( 6 ). The same compounds were prepared by the same procedure from 2‐alkyl/aryl‐3‐ureido‐1H‐indoles ( 4 ), which were obtained from the reaction of 3‐alkyl/aryl‐3‐aminoquinoline‐2,4(1H,3H)‐diones ( 1 ) with 1,3‐diphenylurea or by the transformation of 3a‐alkyl/aryl‐9b‐hydroxy‐3,3a,5,9b‐tetrahydro‐1H‐imidazo[4,5‐c]quinoline‐2,4‐diones ( 3 ) and 5‐alkyl/aryl‐4‐(2‐aminophenyl)‐1,3‐dihydro‐2H‐imidazol‐2‐ones ( 6 ) in boiling AcOH. The latter were converted into 1,3‐bis[2‐(2‐oxo‐2,3‐dihydro‐1H‐imidazol‐4‐yl)phenyl]ureas ( 5 ) by treatment with triphosgene. All compounds were characterized by 1H‐ and 13C‐NMR and IR spectroscopy, as well as atmospheric pressure chemical‐ionisation mass spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号