首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transition‐metal phosphides (TMPs) have emerged as promising catalyst candidates for the hydrogen evolution reaction (HER). Although numerous methods have been investigated to obtain TMPs, most rely on traditional synthetic methods that produce materials that are inherently deficient with respect to electrical conductivity. An electrospinning‐based reduction approach is presented, which generates nickel phosphide nanoparticles in N‐doped porous carbon nanofibers (Ni2P@NPCNFs) in situ. Ni2P nanoparticles are protected from irreversible fusion and aggregation in subsequent high‐temperature pyrolysis. The resistivity of Ni2P@NPCNFs (5.34 Ω cm) is greatly decreased by 104 times compared to Ni2P (>104 Ω cm) because N‐doped carbon NFs are incorporated. As an electrocatalyst for HER, Ni2P@NPCNFs reveal remarkable performance compared to other previously reported catalysts in acidic media. Additionally, it offers excellent catalytic ability and durability in both neutral and basic media. Encouraged by the excellent electrocatalytic performance of Ni2P@NPCNFs, a series of pea‐like MxP@NPCNFs, including Fe2P@NPCNFs, Co2P@NPCNFs, and Cu3P@NPCNFs, were synthesized by the same method. Detailed characterization suggests that the newly developed method could render combinations of ultrafine metal phosphides with porous carbon accessible; thereby, extending opportunities in electrocatalytic applications.  相似文献   

2.
Solar light harvesting by photocatalytic H2 evolution from water could solve the problem of greenhouse gas emission from fossil fuels with alternative clean energy. However, the development of more efficient and robust catalytic systems remains a great challenge for the technological use on a large scale. Here we report the synthesis of a sol–gel prepared mesoporous graphitic carbon nitride (sg‐CN) combined with nickel phosphide (Ni2P) which acts as a superior co‐catalyst for efficient photocatalytic H2 evolution by visible light. This integrated system shows a much higher catalytic activity than the physical mixture of Ni2P and sg‐CN or metallic nickel on sg‐CN under similar conditions. Time‐resolved photoluminescence and electron paramagnetic resonance (EPR) spectroscopic studies revealed that the enhanced carrier transfer at the Ni2P–sg‐CN heterojunction is the prime source for improved activity.  相似文献   

3.
Uniform Ni3C nanodots dispersed in ultrathin N‐doped carbon nanosheets were successfully prepared by carburization of the two dimensional (2D) nickel cyanide coordination polymer precursors. The Ni3C based nanosheets have lateral length of about 200 nm and thickness of 10 nm. When doped with Fe, the Ni3C based nanosheets exhibited outstanding electrocatalytic properties for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). For example, 2 at % Fe (atomic percent) doped Ni3C nanosheets depict a low overpotential (292 mV) and a small Tafel slope (41.3 mV dec−1) for HER in KOH solution. An outstanding OER catalytic property is also achieved with a low overpotential of 275 mV and a small Tafel slope of 62 mV dec−1 in KOH solution. Such nanodot‐incorporated 2D hybrid structures can serve as an efficient bifunctional electrocatalyst for overall water splitting.  相似文献   

4.
Searching for inexpensive hydrogen evolution reaction (HER) electrocatalysts with high activity has attracted considerable research interest in the past years. Reported herein is the topotactic fabrication of self‐supported Cu3P nanowire arrays on commercial porous copper foam (Cu3P NW/CF) from its Cu(OH)2 NW/CF precursor by a low‐temperature phosphidation reaction. Remarkably, as an integrated three‐dimensional hydrogen‐evolving cathode operating in acidic electrolytes, Cu3P NW/CF maintains its activity for at least 25 hours and exhibits an onset overpotential of 62 mV, a Tafel slope of 67 mV dec?1, and a Faradaic efficiency close to 100 %. Catalytic current density can approach 10 mA cm?2 at an overpotential of 143 mV.  相似文献   

5.
One of the challenges to realize large‐scale water splitting is the lack of active and low‐cost electrocatalysts for its two half reactions: H2 and O2 evolution reactions (HER and OER). Herein, we report that cobalt‐phosphorous‐derived films (Co‐P) can act as bifunctional catalysts for overall water splitting. The as‐prepared Co‐P films exhibited remarkable catalytic performance for both HER and OER in alkaline media, with a current density of 10 mA cm?2 at overpotentials of ?94 mV for HER and 345 mV for OER and Tafel slopes of 42 and 47 mV/dec, respectively. They can be employed as catalysts on both anode and cathode for overall water splitting with 100 % Faradaic efficiency, rivalling the integrated performance of Pt and IrO2. The major composition of the as‐prepared and post‐HER films are metallic cobalt and cobalt phosphide, which partially evolved to cobalt oxide during OER.  相似文献   

6.
Ultrathin two‐dimensional (2D) nanostructures have attracted increasing research interest for energy storage and conversion. However, tackling the key problem of lattice mismatch inducing the instability of ulreathin nanostructures during phase transformations is still a critical challenge. Herein, we describe a facile and scalable strategy for the growth of ultrathin nickel phosphide (Ni2P) nanosheets (NSs) with exposed (001) facets. We show that single‐layer functionalized graphene with residual oxygen‐containing groups and a large lateral size contributes to reducing the lattice strain during phosphorization. The resulting nanostructure exhibits remarkable hydrogen evolution activity and good stability under alkaline conditions.  相似文献   

7.
Herein, we describe a simple two‐step approach to prepare nickel phosphide with different phases, such as Ni2P and Ni5P4, to explain the influence of material microstructure and electrical conductivity on electrochemical performance. In this approach, we first prepared a Ni–P precursor through a ball milling process, then controlled the synthesis of either Ni2P or Ni5P4 by the annealing method. The as‐prepared Ni2P and Ni5P4 are investigated as supercapacitor electrode materials for potential energy storage applications. The Ni2P exhibits a high specific capacitance of 843.25 F g?1, whereas the specific capacitance of Ni5P4 is 801.5 F g?1. Ni2P possesses better cycle stability and rate capability than Ni5P4. In addition, the Fe2O3//Ni2P supercapacitor displays a high energy density of 35.5 Wh kg?1 at a power density of 400 W kg?1 and long cycle stability with a specific capacitance retention rate of 96 % after 1000 cycles, whereas the Fe2O3//Ni5P4 supercapacitor exhibits a high energy density of 29.8 Wh kg?1 at a power density of 400 W kg?1 and a specific capacitance retention rate of 86 % after 1000 cycles.  相似文献   

8.
《化学:亚洲杂志》2017,12(22):2956-2961
Developing efficient non‐noble metal and earth‐abundant electrocatalysts with tunable microstructures for overall water splitting is critical to promote clean energy technologies for a hydrogen economy. Herein, novel three‐dimensional (3D) flower‐like Ni2P composed of mesoporous nanoplates with controllable morphology and high surface area was prepared by a hydrothermal method and low‐temperature phosphidation as efficient electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Compared with the urchin‐like Nix Py , the 3D flower‐like Ni2P with a diameter of 5 μm presented an efficient and stable catalytic performance in 0.5 m H2SO4, with a small Tafel slope of 79 mV dec−1 and an overpotential of about 240 mV at a current density of 10 mA cm−2 with a mass loading density of 0.283 mg cm−2. In addition, the catalyst also exhibited a remarkable performance for the OER in 1.0 m KOH electrolyte, with an overpotential of 320 mV to reach a current density of 10 mA cm−2 and a small Tafel slope of 72 mV dec−1. The excellent catalytic performance of the as‐prepared Ni2P may be ascribed to its novel 3D morphology with unique mesoporous structure.  相似文献   

9.
Transition metal phosphide is regarded as one of the most promising candidates to replace noble-metal hydrogen evolution reaction (HER) electrocatalysts. Nevertheless, the controllable design and synthesis of transition metal phosphide electrocatalysts with efficient and stable electrochemical performance are still very challenging. Herein, a novel hierarchical HER electrocatalyst consisting of three-dimensional (3D) coral-like Mn-doped Co2P@an intermediate layer of Ni2P generated in situ by phosphorization on Ni foam (MnCoP/NiP/NF) is reported. Notably, both the incorporation of Mn and introduction of the Ni2P interlayer promote Co atoms to carry more electrons, which is beneficial to reduce the force of the Co−H bond and optimize the adsorption energy of hydrogen intermediate (|ΔGH*|), thereby making MnCoP/NiP/NF exhibit outstanding HER performance with onset overpotential and Tafel slope as low as 31.2 mV and 61 mV dec−1, respectively, in 1 m KOH electrolyte.  相似文献   

10.
The reaction of zerovalent nickel compounds with white phosphorus (P4) is a barely explored route to binary nickel phosphide clusters. Here, we show that coordinatively and electronically unsaturated N‐heterocyclic carbene (NHC) nickel(0) complexes afford unusual cluster compounds with P1, P3, P5 and P8 units. Using [Ni(IMes)2] [IMes=1,3‐bis(2,4,6‐trimethylphenyl)imidazolin‐2‐ylidene], electron‐deficient Ni3P4 and Ni3P6 clusters have been isolated, which can be described as superhypercloso and hypercloso clusters according to the Wade–Mingos rules. Use of the bulkier NHC complexes [Ni(IPr)2] or [(IPr)Ni(η6‐toluene)] [IPr=1,3‐bis(2,6‐diisopropylphenyl)imidazolin‐2‐ylidene] affords a closo‐Ni3P8 cluster. Inverse‐sandwich complexes [(NHC)2Ni2P5] (NHC=IMes, IPr) with an aromatic cyclo‐P5? ligand were identified as additional products.  相似文献   

11.
Developing highly active, stable and robust electrocatalysts based on earth‐abundant elements for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is important for many renewable energy conversion processes. Herein, NixCo3‐xO4 nanoneedle arrays grown on 3D porous nickel foam (NF) was synthesized as a bifunctional electrocatalyst with OER and HER activity for full water splitting. Benefiting from the advantageous structure, the composite exhibits superior OER activity with an overpotential of 320 mV achieving the current density of 10 mA cm?2. An exceptional HER activity is also acquired with an overpotential of 170 mV at the current density of 10 mA cm?2. Furthermore, the catalyst also shows the superior activity and stability for 20 h when used in the overall water splitting cell. Thus, the hierarchical 3D structure composed of the 1D nanoneedle structure in NixCo3‐xO4/NF represents an avenue to design and develop highly active and bifunctional electrocatalysts for promising energy conversion.  相似文献   

12.
Metal–organic frameworks (MOFs) provide a tunable platform for hierarchically integrating multiple components to effect synergistic functions that cannot be achieved in solution. Here we report the encapsulation of a Ni‐containing polyoxometalate (POM) [Ni4(H2O)2(PW9O34)2]10? ( Ni4P2 ) into two highly stable and porous phosphorescent MOFs. The proximity of Ni4P2 to multiple photosensitizers in Ni4P2 @MOF allows for facile multi‐electron transfer to enable efficient visible‐light‐driven hydrogen evolution reaction (HER) with turnover numbers as high as 1476. Photophysical and electrochemical studies established the oxidative quenching of the excited photosensitizer by Ni4P2 as the initiating step of HER and explained the drastic catalytic activity difference of the two POM@MOFs. Our work shows that POM@MOF assemblies not only provide a tunable platform for designing highly effective photocatalytic HER catalysts but also facilitate detailed mechanistic understanding of HER processes.  相似文献   

13.
Iron is the cheapest and one of the most abundant transition metals. Natural [FeFe]‐hydrogenases exhibit remarkably high activity in hydrogen evolution, but they suffer from high oxygen sensitivity and difficulty in scale‐up. Herein, an FeP nanowire array was developed on Ti plate (FeP NA/Ti) from its β‐FeOOH NA/Ti precursor through a low‐temperature phosphidation reaction. When applied as self‐supported 3D hydrogen evolution cathode, the FeP NA/Ti electrode shows exceptionally high catalytic activity and good durability, and it only requires overpotentials of 55 and 127 mV to afford current densities of 10 and 100 mA cm2, respectively. The excellent electrocatalytic performance is promising for applications as non‐noble‐metal HER catalyst with a high performance–price ratio in electrochemical water splitting for large‐scale hydrogen fuel production.  相似文献   

14.
A nickel pyrazinedithiolate ([Ni(dcpdt)2]2−; dcpdt=5,6‐dicyanopyrazine‐2,3‐dithiolate), bearing a NiS4 core similar to the active center of [NiFe] hydrogenase, is shown to serve as an efficient molecular catalyst for the hydrogen evolution reaction (HER). This catalyst shows effectively low overpotentials for HER (330–400 mV at pH 4–6). Moreover, the turnover number of catalysis reaches 20 000 over the 24 h electrolysis with a high Faradaic efficiency, 92–100 %. The electrochemical and DFT studies reveal that diprotonated one‐electron‐reduced species (i.e., [NiII(dcpdt)(dcpdtH2)] or [NiII(dcpdtH)2]) forms at pH<6.4 via ligand‐based proton‐coupled electron‐transfer (PCET) pathways, leading to electrocatalytic HER without applying the highly negative potential required to generate low‐valent nickel intermediates. This is the first example of catalysts exhibiting such behavior.  相似文献   

15.
Transition‐metal phosphide nanowires were facilely synthesized by Ullmann‐type reactions between transition metals and triphenylphosphine in vacuum‐sealed tubes at 350–400 °C. The phase (stoichiometry) of the phosphide products is controllable by tuning the metal/PPh3 molar ratio and concentration, reaction temperature and time, and heating rate. Six classes of iron, cobalt, and nickel phosphide (Fe2P, FeP, Co2P, CoP, Ni2P, and NiP2) nanostructures were prepared to demonstrate the general applicability of this new method. The resulting phosphide nanostructures exhibit interesting phase‐ and composition‐dependent magnetic properties, and magnetic measurements suggested that the Co2P nanowires with anti‐PbCl2 structure show a ferromagnetic–paramagnetic transition at 6 K, while the MnP‐structured CoP nanowires are paramagnetic with Curie–Weiss behavior. Moreover, GC‐MS analyses of organic byproducts of the reaction revealed that thermally generated phenyl radicals promoted the formation of transition‐metal phosphides under synthetic conditions. Our work offers a general method for preparing one‐dimensional nanoscale transition‐metal phosphides that are promising for magnetic and electronic applications.  相似文献   

16.
Simultaneously synthesizing and structuring atomically thick or ultrathin 2D non‐precious metal nanocrystal may offer a new class of materials to replace the state‐of‐art noble‐metal electrocatalysts; however, the synthetic strategy is the bottleneck which should be urgently solved. Here we report the synthesis of an ultrathin nickel nanosheet array (Ni‐NSA) through in situ topotactic reduction from Ni(OH)2 array precursors. The Ni nanosheets showed a single‐crystalline lamellar structure with only ten atomic layers in thickness and an exposed (111) facet. Combined with a superaerophobic (low bubble adhesive) arrayed structure the Ni‐NSAs exhibited a dramatic enhancement on both activity and stability towards the hydrazine‐oxidation reaction (HzOR) relative to platinum. Furthermore, the partial oxidization of Ni‐NSAs in ambient atmosphere resulted in effective water‐splitting electrocatalysts for the hydrogen‐evolution reaction (HER).  相似文献   

17.
Preparation of Ni2P by temperature‐programmed reduction (TPR) of a phosphate precursor is challenging because the P?O bond is strong. An alternative approach to synthesizing Ni2P, by reduction of nickel hexathiodiphosphate (Ni2P2S6), is presented. Conversion of Ni2P2S6 into Ni2P occurs at 200–220 °C, a temperature much lower than that required by the conventional TPR method (typically 500 °C). A sulfur‐containing layer with a thickness of about 4.7 nm, composed of tiny crystallites, was observed at the surface of the obtained Ni2P catalyst (Ni2P?S). This is a direct observation of the sulfur‐containing layer of Ni2P, or the so‐called nickel phosphosulfide phase. Both the hydrodesulfurization activity and the selective hydrogenation performance of Ni2P‐S were superior to that of the catalyst prepared by the TPR method, suggesting a positive role of sulfur on the surface of Ni2P‐S. These features render Ni2P‐S a legitimate alternative non‐precious metal catalyst for hydrogenation reactions.  相似文献   

18.
Exploring an alternative anodic reaction to produce value‐added chemicals with high selectivity, especially integrated with promoted hydrogen generation, is desirable. Herein, a selective semi‐dehydrogenation of tetrahydroisoquinolines (THIQs) is demonstrated to replace the oxygen evolution reaction (OER) for boosting H2 evolution reaction (HER) in water over a Ni2P nanosheet electrode. The value‐added semi‐dehydrogenation products, dihydroisoquinolines (DHIQs), can be selectively obtained with high yields at the anode. The controllable semi‐dehydrogenation is attributed to the in situ formed NiII/NiIII redox active species. Such a strategy can deliver a variety of DHIQs bearing electron‐withdrawing/donating groups in good yields and excellent selectivities, and can be applied to gram‐scale synthesis. A two‐electrode Ni2P bifunctional electrolyzer can produce both H2 and DHIQs with robust stability and high Faradaic efficiencies at a much lower cell voltage than that of overall water splitting.  相似文献   

19.
As an environmentally friendly approach to generate H2, electrocatalytic water splitting has attracted worldwide interest. However, its broad employment has been inhibited by costly catalysts and low energy conversion efficiency, mainly due to the sluggish anodic half reaction, the O2 evolution reaction (OER), whose product O2 is not of significant value. Herein, we report an efficient strategy to replace OER with a thermodynamically more favorable reaction, the oxidation of 5‐hydroxymethylfurfural (HMF) to 2,5‐furandicarboxylic acid (FDCA), catalyzed by 3D Ni2P nanoparticle arrays on nickel foam (Ni2P NPA/NF). HMF is one of the primary dehydration intermediates of raw biomass and FDCA is of many industrial applications. As a bifunctional electrocatalyst, Ni2P NPA/NF is not only active for HMF oxidation but also competent for H2 evolution. In fact, a two‐electrode electrolyzer employing Ni2P NPA/NF for simultaneous H2 and FDCA production required a voltage at least 200 mV smaller compared with pure water splitting to achieve the same current density, as well as exhibiting robust stability and nearly unity Faradaic efficiencies.  相似文献   

20.
It is highly attractive but challenging to develop earth‐abundant electrocatalysts for energy‐saving electrolytic hydrogen generation. Herein, we report that Ni2P nanoarrays grown in situ on nickel foam (Ni2P/NF) behave as a durable high‐performance non‐noble‐metal electrocatalyst for hydrazine oxidation reaction (HzOR) in alkaline media. The replacement of the sluggish anodic oxygen evolution reaction with such the more thermodynamically favorable HzOR enables energy‐saving electrochemical hydrogen production with the use of Ni2P/NF as a bifunctional catalyst for anodic HzOR and cathodic hydrogen evolution reaction. When operated at room temperature, this two‐electrode electrolytic system drives 500 mA cm−2 at a cell voltage as low as 1.0 V with strong long‐term electrochemical durability and 100 % Faradaic efficiency for hydrogen evolution in 1.0 m KOH aqueous solution with 0.5 m hydrazine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号