首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ordered open channels found in two‐dimensional covalent organic frameworks (2D COFs) could enable them to adsorb carbon dioxide. However, the frameworks’ dense layer architecture results in low porosity that has thus far restricted their potential for carbon dioxide adsorption. Here we report a strategy for converting a conventional 2D COF into an outstanding platform for carbon dioxide capture through channel‐wall functionalization. The dense layer structure enables the dense integration of functional groups on the channel walls, creating a new version of COFs with high capacity, reusability, selectivity, and separation productivity for flue gas. These results suggest that channel‐wall functional engineering could be a facile and powerful strategy to develop 2D COFs for high‐performance gas storage and separation.  相似文献   

2.
The construction of a new class of covalent TTF lattice by integrating TTF units into two‐dimensional covalent organic frameworks (2D COFs) is reported. We explored a general strategy based on the C2+C2 topological diagram and applied to the synthesis of microporous and mesoporous TTF COFs. Structural resolutions revealed that both COFs consist of layered lattices with periodic TTF columns and tetragonal open nanochannels. The TTF columns offer predesigned pathways for high‐rate hole transport, predominate the HOMO and LUMO levels of the COFs, and are redox active to form organic salts that exhibit enhanced electric conductivity by several orders of magnitude. On the other hand, the linkers between the TTF units play a vital role in determining the carrier mobility and conductivity through the perturbation of 2D sheet conformation and interlayer distance. These results open a way towards designing a new type of TTF materials with stable and predesignable lattice structures for functional exploration.  相似文献   

3.
Covalent organic frameworks (COFs) have been proposed for electrochemical energy storage, although the poor conductivity resulted from covalent bonds limits their practical performance. Here, we propose to introduce noncovalent bonds in COFs through a molecular insertion strategy for improving the conductivity of the COFs as supercapacitor. The synthesized COFs (MI−COFs) establish equilibriums between covalent bonds and noncovalent bonds, which construct a continuous charge transfer channel to enhance the conductivity. The rapid charge transfer rate enables the COFs to activate the redox sites, bringing about excellent electrochemical energy storage behavior. The results show that the MI−COFs exhibit much better performance in specific capacitance and capacity retention rate than those of most COFs-based supercapacitors. Moreover, through simply altering inserted guests, the mode and strength of noncovalent bond can be adjusted to obtain different energy storage characteristics. The introduction of noncovalent bonds is an effective and flexible way to enhance and regulate the properties of COFs, providing a valuable direction for the development of novel COFs-based energy storage materials.  相似文献   

4.
One promising candidate for high‐energy storage systems is the nonaqueous redox flow battery (NARFB). However, their application is limited by low solubility of redox‐active materials and poor performance at high current density. Reported here is a new strategy, a biredox eutectic, as the sole electrolyte for NARFB to achieve a significantly higher concentration of redox‐active materials and enhance the cell performance. Without other auxiliary solvents, the biredox eutectic electrolyte is formed directly by the molecular interactions between two different redox‐active molecules. Such a unique electrolyte possesses high concentration with low viscosity (3.5 m , for N‐butylphthalimide and 1,1‐dimethylferrocene system) and a relatively high working voltage of 1.8 V, enabling high capacity and energy density of NARFB. The resulting high‐performance NARFB demonstrates that the biredox eutectic based strategy is potentially promising for low‐cost and high‐energy storage systems.  相似文献   

5.
Covalent organic frameworks (COFs) have attracted attention due to their ordered pores leading to important industrial applications like storage and separation. Combined with their modular synthesis and pore engineering, COFs could become ideal candidates for nanoseparations. However, the fabrication of these microcrystalline powders as continuous, crack‐free, robust films remains a challenge. Herein, we report a simple, slow annealing strategy to construct centimeter‐scale COF films ( Tp‐Azo and Tp‐TTA ) with micrometer thickness. The as‐synthesized films are porous (SABET=2033 m2 g?1 for Tp‐Azo ) and chemically stable. These COFs have distinct size cut‐offs (ca. 2.7 and ca. 1.6 nm for Tp‐Azo and Tp‐TTA , respectively), which allow the size‐selective separation of gold nanoparticles. Unlike, other conventional membranes, the durable structure of the COF films allow for excellent recyclability (up to 4 consecutive cycles) and easy recovery of the gold nanoparticles from the solution.  相似文献   

6.
Wide‐scale exploitation of renewable energy requires low‐cost efficient energy storage devices. The use of metal‐free, inexpensive redox‐active organic materials represents a promising direction for environmental‐friendly, cost‐effective sustainable energy storage. To this end, a liquid battery is designed using hydroquinone (H2BQ) aqueous solution as catholyte and graphite in aprotic electrolyte as anode. The working potential can reach 3.4 V, with specific capacity of 395 mA h g−1 and stable capacity retention about 99.7 % per cycle. Such high potential and capacity is achieved using only C, H and O atoms as building blocks for redox species, and the replacement of Li metal with graphite anode can circumvent potential safety issues. As H2BQ can be extracted from biomass directly and its redox reaction mimics the bio‐electrochemical process of quinones in nature, using such a bio‐inspired organic compound in batteries enables access to greener and more sustainable energy‐storage technology.  相似文献   

7.
The nano-hybrids were prepared by in situ polymerization of redox active TpPa-COFs together with single-walled carbon nanotubes (SWCNTs) under solvothermal conditions. The improvement of electrochemical performances of covalent organic frameworks (COFs) wires incorporated with SWCNTs makes the structure a guidance for application of COFs in electrical energy storage.  相似文献   

8.
Two‐dimensional covalent organic frameworks (2D COFs) provide a unique platform for the molecular design of electronic and optoelectronic materials. Here, the synthesis and characterization of an electroactive COF containing the well‐known tetrathiafulvalene (TTF) unit is reported. The TTF‐COF crystallizes into 2D sheets with an eclipsed AA stacking motif, and shows high thermal stability and permanent porosity. The presence of TTF units endows the TTF‐COF with electron‐donating ability, which is characterized by cyclic voltammetry. In addition, the open frameworks of TTF‐COF are amenable to doping with electron acceptors (e.g., iodine), and the conductivity of TTF‐COF bulk samples can be improved by doping. Our results open up a reliable route for the preparation of well‐ordered conjugated TTF polymers, which hold great potential for applications in fields from molecular electronics to energy storage.  相似文献   

9.
Three‐dimensional covalent organic frameworks (3D COFs) are promising crystalline materials with well‐defined structures, high porosity, and low density; however, the limited choice of building blocks and synthetic difficulties have hampered their development. Herein, we used a flexible and aliphatic macrocycle, namely γ‐cyclodextrin (γ‐CD), as the soft struts for the construction of a polymeric and periodic 3D extended network, with the units joined via tetrakis(spiroborate) tetrahedra with various counterions. The inclusion of pliable moieties in the robust open framework endows these CD‐COFs with dynamic features, leading to a prominent Li ion conductivity of up to 2.7 mS cm−1 at 30 °C and excellent long‐term Li ion stripping/plating stability. Exchanging the counterions within the pores can effectively modulate the interactions between the CD‐COF and CO2 molecules.  相似文献   

10.
Wide‐scale exploitation of renewable energy requires low‐cost efficient energy storage devices. The use of metal‐free, inexpensive redox‐active organic materials represents a promising direction for environmental‐friendly, cost‐effective sustainable energy storage. To this end, a liquid battery is designed using hydroquinone (H2BQ) aqueous solution as catholyte and graphite in aprotic electrolyte as anode. The working potential can reach 3.4 V, with specific capacity of 395 mA h g?1 and stable capacity retention about 99.7 % per cycle. Such high potential and capacity is achieved using only C, H and O atoms as building blocks for redox species, and the replacement of Li metal with graphite anode can circumvent potential safety issues. As H2BQ can be extracted from biomass directly and its redox reaction mimics the bio‐electrochemical process of quinones in nature, using such a bio‐inspired organic compound in batteries enables access to greener and more sustainable energy‐storage technology.  相似文献   

11.
Covalent‐organic frameworks (COFs) as porous crystalline materials show promising potential applications. However, developing facile strategies for the construction of COFs directly from amorphous covalent organic polymers (COPs) is still a great challenge. To this end, we report a novel approach for easy preparation of COFs from amorphous COPs through the linkage replacement under different types of reactions. Four COFs with high crystallinity and porosity were constructed via the linkage substitution of polyimide‐linked COPs to imine‐linked COFs as well as imine‐linked COPs to polyimide‐linked COFs. The realization of the linkage substitution would significantly expand the research scope of COFs.  相似文献   

12.
The design and synthesis of 3D covalent organic frameworks (COFs) have been considered a challenge, and the demonstrated applications of 3D COFs have so far been limited to gas adsorption. Herein we describe the design and synthesis of two new 3D microporous base‐functionalized COFs, termed BF‐COF‐1 and BF‐COF‐2, by the use of a tetrahedral alkyl amine, 1,3,5,7‐tetraaminoadamantane (TAA), combined with 1,3,5‐triformylbenzene (TFB) or triformylphloroglucinol (TFP). As catalysts, both BF‐COFs showed remarkable conversion (96 % for BF‐COF‐1 and 98 % for BF‐COF‐2), high size selectivity, and good recyclability in base‐catalyzed Knoevenagel condensation reactions. This study suggests that porous functionalized 3D COFs could be a promising new class of shape‐selective catalysts.  相似文献   

13.
Covalent organic frameworks (COFs) allow elaborate manufacture of ordered one‐dimensional channels in the crystal. We defined a superlattice of COFs by engineering channels with a persistent triangular shape and discrete pore size. We observed a size‐recognition regime that is different from the characteristic adsorption of COFs, whereby pore windows and walls were cooperative so that triangular apertures sorted molecules of one‐atom difference and notch nanogrooves confined them into single‐file molecular chains. The recognition and confinement were accurately described by sensitive spectroscopy and femtosecond dynamic simulations. The resulting COFs enabled instantaneous separation of mixtures at ambient temperature and pressure. This study offers an approach to merge precise recognition, selective transport, and instant separation in synthetic 1D channels.  相似文献   

14.
Using an external stimulus to modulate the electronic structure of covalent organic frameworks (COFs) is very important because such a response will endow them with additional functions. A two‐dimensional (2D) COF, constructed from a photo‐responsive unit (1,2‐bis(5‐formyl‐2‐methylthien‐3‐yl)cyclopentene), can reversibly switch its electrical conductivity 200 times from low state (the open form) to high state (the closed form) upon irradiation with UV light and reversible with visible light. This reversible phenomenon can be monitored through a circuit containing a light‐emitting diode (LED). Photoinduced ring‐closing/opening reactions do not destroy the integrity of the frameworks, and both processes follow logarithmic carrier generation with time. Moreover, the correlation between COFs electronic properties and changes in photoinduced kinetics and absorption curves has been demonstrated.  相似文献   

15.
The field of covalent organic frameworks (COFs) has been developed significantly in the past decade on account of their important characteristics and vast application potential. On the other hand, the discovery of novel synthetic methodology is still a challenging task to further promote the preparation of COFs. Herein, an interesting protocol for the conversion of amorphous nonporous covalent organic polymers (COPs) to COFs was established, affording four COFs with high crystallinity and porosity. Specifically, imine‐linked amorphous COP‐1 was successfully converted to COF‐1–4 by replacing one type of linker with other organic building blocks. The realization of this conversion provides a facile method for constructing COFs from COPs.  相似文献   

16.
《Electrophoresis》2017,38(24):3059-3078
In the field of analytical chemistry, sample preparation and chromatographic separation are two core procedures. The means by which to improve the sensitivity, selectivity and detection limit of a method have become a topic of great interest. Recently, porous organic frameworks, such as metal‐organic frameworks (MOFs) and covalent organic frameworks (COFs), have been widely used in this research area because of their special features, and different methods have been developed. This review summarizes the applications of MOFs and COFs in sample preparation and chromatographic stationary phases. The MOF‐ or COF‐based solid‐phase extraction (SPE), solid‐phase microextraction (SPME), gas chromatography (GC), high‐performance liquid chromatography (HPLC) and capillary electrochromatography (CEC) methods are described. The excellent properties of MOFs and COFs have resulted in intense interest in exploring their performance and mechanisms for sample preparation and chromatographic separation.  相似文献   

17.
Chemical functionalization of covalent organic frameworks (COFs) is critical for tuning their properties and broadening their potential applications. However, the introduction of functional groups, especially to three‐dimensional (3D) COFs, still remains largely unexplored. Reported here is a general strategy for generating a 3D carboxy‐functionalized COF through postsynthetic modification of a hydroxy‐functionalized COF, and for the first time exploration of the 3D carboxy‐functionalized COF in the selective extraction of lanthanide ions. The obtained COF shows high crystallinity, good chemical stability, and large specific surface area. Furthermore, the carboxy‐functionalized COF displays high metal loading capacities together with excellent adsorption selectivity for Nd3+ over Sr2+ and Fe3+ as confirmed by the Langmuir adsorption isotherms and ideal adsorbed solution theory (IAST) calculations. This study not only provides a strategy for versatile functionalization of 3D COFs, but also opens a way to their use in environmentally related applications.  相似文献   

18.
We demonstrate here a remarkable electrochemical activation of polypyrrole chains by doping with redox‐active diphenylamine sulfonate anions. The organic redox dopant can not only serve as anionic counterions to enhance electrochemical activity of the polymer chains, but also contributes their redox capacity to the material. This organic‐polymer composite exhibits a quite high reversible capacity of 115 mA h g?1, excellent rate capability and cycling stability, capable of serving as a low cost, and renewable cathode for Na‐ion batteries. Since the chemical doping method is simple and easily extendable for a large variety of organic anions and polymer networks, it is possible to adopt this new strategy for creating low cost and electrochemically active polymer materials for widespread electric storage applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

19.
Developing effective synthetic strategies as well as enriching functionalities for sp2‐carbon‐linked covalent organic frameworks (COFs) still remains a challenge. Now, taking advantage of a variant of Knoevenagel condensation, a new fully conjugated COF ( g‐C34N6‐COF ) linked by unsubstituted C=C bonds was synthesized. Integrating 3,5‐dicyano‐2,4,6‐trimethylpyridine and 1,3,5‐triazine units into the molecular framework leads to the enhanced π‐electron communication and electrochemical activity. This COF shows uniform nanofibrous morphology. By assembling it with carbon nanotubes, a flexible thin‐film electrode for a micro‐supercapacitor (MSC) can be easily obtained. The resultant COF‐based MSC shows an areal capacitance of up to 15.2 mF cm?2, a high energy density of up to 7.3 mWh cm?3, and remarkable rate capability. These values are among the highest for state‐of‐the‐art MSCs. Moreover, this device exhibits excellent flexibility and integration capability.  相似文献   

20.
Layered covalent organic frameworks (2D‐COFs), composed of reversible imine linkages and accessible pores, offer versatility for chemical modifications towards the development of catalytic materials. Nitrogen‐enriched COFs are good candidates for binding Pd species. Understanding the local structure of reacting Pd sites bonded to the COF pores is key to rationalize interactions between active sites and porous surfaces. By combining advanced synchrotron characterization methods with periodic computational DFT modeling, the precise atomic structure of catalytic Pd sites attached to local defects is resolved within an archetypical imine‐linked 2D‐COF. This material was synthesized using an in situ method as a gel, under which imine hydrolysis and metalation reactions are coupled. Local defects formed in situ within imine‐linked 2D‐COF materials are highly reactive towards Pd metalation, resulting in active materials for Suzuki–Miyaura cross‐coupling reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号