首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The significant variety in the crystal structures of rare‐earth carboxylate complexes is due to both the large coordination numbers of the rare‐earth cations and the ability of the carboxylate anions to form several types of bridges between rare‐earth metal atoms. Therefore, these complexes are represented by mono‐, di‐ and polynuclear complexes, and by coordination polymers. The interaction of LnCl3(thf)x (Ln = Eu or Y; thf is tetrahydrofuran) with sodium or diethylammonium diphenylacetate in methanol followed by recrystallization from a DME/THF/hexane solvent mixture (DME is 1,2‐dimethoxyethane) leads to crystals of the non‐isomorphic dinuclear complexes tetrakis(μ‐2,2‐diphenylacetato)‐κ4O:O′;κ3O,O′:O′;κ3O:O,O′‐bis[(1,2‐dimethoxyethane‐κ2O,O′)(2,2‐diphenylacetato‐κ2O,O′)europium(III)], [Eu(C14H11O2)6(C4H10O2)2], (I), and tetrakis(μ‐2,2‐diphenylacetato)‐κ4O:O′;κ3O,O′:O′;κ3O:O,O′‐bis[(1,2‐dimethoxyethane‐κ2O,O′)(2,2‐diphenylacetato‐κ2O,O′)yttrium(III)], [Y(C14H11O2)6(C4H10O2)2], (II), possessing monoclinic (P21/c) symmetry. The [Ln(Ph2CHCOO)3(dme)]2 molecule (Ln = Eu or Y) lies on an inversion centre and exhibits three different coordination modes of the diphenylacetate ligands, namely bidentate κ2O,O′‐terminal, bidentate μ2‐κ1O1O′‐bridging and tridentate μ2‐κ1O2O,O′‐semibridging. The terminal and bridging ligands in (I) are disordered over two positions, with an occupancy ratio of 0.806 (2):0.194 (2). The interaction of EuCl3(thf)2 with Na[Ph3CCOO] in methanol followed by crystallization from hot methanol produces crystals of tetrakis(methanol‐κO)tris(2,2,2‐triphenylacetato)‐κ4O:O′;κO‐europium(III) methanol disolvate, [Eu(C19H15O2)3(CH3OH)4]·2CH3OH, (III)·2MeOH, with triclinic (P) symmetry. The molecule of (III) contains two O,O′‐bidentate and one O‐monodentate terminal triphenylacetate ligand. (III)·2MeOH possesses one intramolecular and four intermolecular hydrogen bonds, forming a [(III)·2MeOH]2 dimer with two bridging methanol molecules.  相似文献   

2.
A new packing polymorph of bis(2,6‐di‐tert‐butyl‐4‐methylphenolato‐κO)bis(tetrahydrofuran‐κO)magnesium, [Mg(C15H23O)2(C4H8O)2] or Mg(BHT)2(THF)2, (BHT is the 2,6‐di‐tert‐butyl‐4‐methylphenoxide anion and THF is tetrahydrofuran), ( 1 ), has the same space group (P21) as the previously reported modification [Nifant'ev et al. (2017d). Dalton Trans. 46 , 12132–12146], but contains three crystallographically independent molecules instead of one. The structure of ( 1 ) exhibits rotational disorder of the tert‐butyl groups and positional disorder of a THF ligand. The complex of bis(2,6‐di‐tert‐butyl‐4‐methylphenolato‐κO)bis(μ2‐ethyl glycolato‐κ2O,O′:κO)dimethyldialuminium, [Al2(CH3)2(C4H7O3)2(C15H23O)2] or [(BHT)AlMe(OCH2COOEt)]2, ( 2 ), is a dimer located on an inversion centre and has an Al2O2 rhomboid core. The 2‐ethoxy‐2‐oxoethanolate ligand (OCH2COOEt) displays a μ2‐κ2O,O′:κO semi‐bridging coordination mode, forming a five‐membered heteronuclear Al–O–C–C–O ring. The same ligand exhibits positional disorder of the terminal methyl group. The redetermined structure of the heptanuclear complex octakis(μ3‐benzyloxo‐κOOO)hexaethylheptazinc, [Zn7(C2H5)6(C7H7O)8] or [Zn7(OCH2Ph)8Et6], ( 3 ), possesses a bicubic Zn7O8 core located at an inversion centre and demonstrates positional disorder of one crystallographically independent phenyl group. Cambridge Structural Database surveys are given for complexes structurally analogous to ( 2 ) and ( 3 ). Complexes ( 2 ) and ( 3 ), as well as derivatives of ( 1 ), are of interest as catalysts for the ring‐opening polymerization of ϵ‐caprolactone, and polymerization results are reported.  相似文献   

3.
The title compound, [Dy2(C8H7O2)6(C12H8N2)2], forms binuclear complexes, viz. di‐μ‐4‐methyl­benzoato‐κ4O:O′‐bis[bis(4‐methyl­benzoato‐κ2O,O′)(1,10‐phenanthroline‐κ2N,N′)dyspros­ium(III)] tetra‐μ‐4‐methyl­benzoato‐κ8O:O′‐bis[(4‐methyl­benzoato‐κ2O,O′)(1,10‐phenanthroline‐κ2N,N′)dyspros­ium(III)]. There are two independent binuclear com­plexes in the asymmetric unit, both of which are centrosymmetric. In one, the DyIII ions are linked by two bridging 4‐­methyl­benzoate groups, while in the other, the DyIII ions are linked by four bridging 4‐methyl­benzoate groups. The remaining 4‐methyl­benzoate groups and 1,10‐phenanthroline units coordinate to just one metal ion in bidentate modes.  相似文献   

4.
The crystal structures of three unusual chromium organophosphate complexes have been determined, namely, bis(μ‐butyl 2,6‐di‐tert‐butyl‐4‐methylphenyl hydrogen phosphato‐κOO′)di‐μ‐hydroxido‐bis[(butyl 2,6‐di‐tert‐butyl‐4‐methylphenyl hydrogen phosphato‐κO)(butyl 2,6‐di‐tert‐butyl‐4‐methylphenyl phosphato‐κO)chromium](CrCr) heptane disolvate or {Cr22‐OH)22‐PO2(OBu)(O‐2,6‐tBu2‐4‐MeC6H2)‐κOO′]2[PO2(OBu)(O‐2,6‐tBu2‐4‐MeC6H2)‐κO]2[HOPO(OBu)(O‐2,6‐tBu2‐4‐MeC6H2)‐κO]2}·2C7H16, [Cr2(C19H32O4P)4(C19H33O4P)2(OH)2]·2C7H16, denoted ( 1 )·2(heptane), [μ‐bis(2,6‐diisopropylphenyl) phosphato‐1κO:2κO′]bis[bis(2,6‐diisopropylphenyl) phosphato]‐1κO,2κO‐chlorido‐2κCl‐triethanol‐1κ2O,2κO‐di‐μ‐ethanolato‐1κ2O:2κ2O‐dichromium(CrCr) ethanol monosolvate or {Cr22‐OEt)22‐PO2(O‐2,6‐iPr2‐C6H3)2‐κOO′][PO2(O‐2,6‐iPr2‐C6H3)2‐κO]2Cl(EtOH)3}·EtOH, [Cr2(C2H5O)2(C24H34O4P)3Cl(C2H6O)3]·C2H6O, denoted ( 2 )·EtOH, and di‐μ‐ethanolato‐1κ2O:2κ2O‐bis{[bis(2,6‐diisopropylphenyl) hydrogen phosphato‐κO][bis(2,6‐diisopropylphenyl) phosphato‐κO]chlorido(ethanol‐κO)chromium}(CrCr) benzene disolvate or {Cr22‐OEt)2[PO2(O‐2,6‐iPr2‐C6H3)2‐κO]2[HOPO(O‐2,6‐iPr2‐C6H3)2‐κO]2Cl2(EtOH)2}·2C6H6, [Cr2(C2H5O)2(C24H34O4P)2(C24H35O4P)2Cl2(C2H6O)2]·2C6H6, denoted ( 3 )·2C6H6. Complexes ( 1 )–( 3 ) have been synthesized by an exchange reaction between the in‐situ‐generated corresponding lithium or potassium disubstituted phosphates with CrCl3(H2O)6 in ethanol. The subsequent crystallization of ( 1 ) from heptane, ( 2 ) from ethanol and ( 3 ) from an ethanol/benzene mixture allowed us to obtain crystals of ( 1 )·2(heptane), ( 2 )·EtOH and ( 3 )·2C6H6, whose structures have the monoclinic P21, orthorhombic P212121 and triclinic P space groups, respectively. All three complexes have binuclear cores with a single Cr—Cr bond, i.e. Cr2O6P2 in ( 1 ), Cr2PO4 in ( 2 ) and Cr2O2 in ( 3 ), where the Cr atoms are in distorted octahedral environments, formally having 16 ē per Cr atom. The complexes have bridging ligands μ2‐OH in ( 1 ) or μ2‐OEt in ( 2 ) and ( 3 ). The organophosphate ligands demonstrate terminal κO coordination modes in ( 1 )–( 3 ) and bridging μ2‐κOO′ coordination modes in ( 1 ) and ( 2 ). All the complexes exhibit hydrogen bonding: two intramolecular Ophos…H—Ophos interactions in ( 1 ) and ( 3 ) form two {H[PO2(OR)2]2} associates; two intramolecular Cl…H—OEt hydrogen bonds additionally stabilize the Cr2O2 core in ( 3 ); two intramolecular Ophos…H—OEt interactions and two O…H—O intermolecular hydrogen bonds with a noncoordinating ethanol molecule are observed in ( 2 )·EtOH. The presence of both basic ligands (OH? or OEt?) and acidic [H(phosphate)2]? associates at the same metal centres in ( 1 ) and ( 3 ) is rather unusual. Complexes may serve as precatalysts for ethylene polymerization under mild conditions, providing polyethylene with a small amount of short‐chain branching. The formation of a small amount of α‐olefins has been detected in this reaction.  相似文献   

5.
The title compound, {[Zn4(C8H4O4)3(OH)2(C12H6N2O2)2]·2H2O}n, has been prepared hydrothermally by the reaction of Zn(NO3)2·6H2O with benzene‐1,4‐dicarboxylic acid (H2bdc) and 1,10‐phenanthroline‐5,6‐dione (pdon) in H2O. In the crystal structure, a tetranuclear Zn4(OH)2 fragment is located on a crystallographic inversion centre which relates two subunits, each containing a [ZnN2O4] octahedron and a [ZnO4] tetrahedron bridged by a μ3‐OH group. The pdon ligand chelates to zinc through its two N atoms to form part of the [ZnN2O4] octahedron. The two crystallographically independent bdc2− ligands are fully deprotonated and adopt μ3‐κOO′:κO′′ and μ4‐κOO′:κO′′:κO′′′ coordination modes, bridging three or four ZnII cations, respectively, from two Zn4(OH)2 units. The Zn4(OH)2 fragment connects six neighbouring tetranuclear units through four μ3‐bdc2− and two μ4‐bdc2− ligands, forming a three‐dimensional framework with uninodal 6‐connected α‐Po topology, in which the tetranuclear Zn4(OH)2 units are considered as 6‐connected nodes and the bdc2− ligands act as linkers. The uncoordinated water molecules are located on opposite sides of the Zn4(OH)2 unit and are connected to it through hydrogen‐bonding interactions involving hydroxide and carboxylate groups. The structure is further stabilized by extensive π–π interactions between the pdon and μ4‐bdc2− ligands.  相似文献   

6.
The title zinc alkoxide, bis(μ‐2‐ethoxyphenolato)‐κ3O1,O2:O13O1:O1,O2‐bis[(2‐ethoxyphenolato‐κ2O1,O2)(pyridine‐κN)zinc(II)] toluene hemisolvate, [Zn2(C8H9O2)4(C5H5N)2]·0.5C7H8, crystallizes with two independent complex molecules located on inversion centres and one independent toluene solvent molecule disordered about an inversion centre. The ZnII atoms are six‐coordinated in distorted octahedral geometries with O5N donor sets. The ZnII ions and bridging alkoxide groups are arranged in a diamond Zn2O2 core structure. The guetholate (2‐ethoxyphenolate) ligands adopt two different coordination modes, viz. peripheral chelating and μ2‐bridging. Preliminary investigations of the catalytic activity of the compound in the ring‐opening polymerization of L‐lactide demonstrate rapid and efficient generation of polylactide.  相似文献   

7.
The ionic title complex, bis(μ‐ethylene glycol)‐κ3O,O′:O′;κ3O:O,O′‐bis[(ethylene glycol‐κ2O,O′)(ethylene glycol‐κO)sodium] bis(ethylene glycolato‐κ2O,O′)copper(II), [Na2(C2H6O2)6][Cu(C2H4O2)2], was obtained from a basic solution of CuCl2 in ethylene glycol and consists of discrete ions interconnected by O—H...O hydrogen bonds. This is the first example of a disodium–ethylene glycol complex cation cluster. The cation lies about an inversion center and the CuII atom of the anion lies on another independent inversion center.  相似文献   

8.
The crystal structures of three first‐row transition metal–pyridine–sulfate complexes, namely catena‐poly[[tetrakis(pyridine‐κN)nickel(II)]‐μ‐sulfato‐κ2O:O′], [Ni(SO4)(C5H5N)4]n, (1), di‐μ‐sulfato‐κ4O:O‐bis[tris(pyridine‐κN)copper(II)], [Cu2(SO4)2(C5H5N)6], (2), and catena‐poly[[tetrakis(pyridine‐κN)zinc(II)]‐μ‐sulfato‐κ2O:O′‐[bis(pyridine‐κN)zinc(II)]‐μ‐sulfato‐κ2O:O′], [Zn2(SO4)2(C5H5N)6]n, (3), are reported. Ni compound (1) displays a polymeric crystal structure, with infinite chains of NiII atoms adopting an octahedral N4O2 coordination environment that involves four pyridine ligands and two bridging sulfate ligands. Cu compound (2) features a dimeric molecular structure, with the CuII atoms possessing square‐pyramidal N3O2 coordination environments that contain three pyridine ligands and two bridging sulfate ligands. Zn compound (3) exhibits a polymeric crystal structure of infinite chains, with two alternating zinc coordination environments, i.e. octahedral N4O2 coordination involving four pyridine ligands and two bridging sulfate ligands, and tetrahedral N2O2 coordination containing two pyridine ligands and two bridging sulfate ligands. The observed coordination environments are consistent with those predicted by crystal field theory.  相似文献   

9.
The polymeric title compounds, namely catena‐poly[[[di‐μ‐but‐2‐enoato‐κ3O:O,O′;κ3O,O′:O′‐bis[diaquadibut‐2‐enoato‐κO2O,O′‐neodymium(III)]]‐μ‐4,4′‐bipyridyl N,N′‐dioxide‐κ2O:O′] 4,4′‐bipyridyl N,N′‐dioxide solvate] and the erbium(III) and yttrium(III) analogues, {[Ln2(C4H5O2)6(C10H8N2O2)(H2O)4]·C10H8N2O2}n (Ln = Nd, Er and Y), form from [Ln2(bt)6(H2O)4] dimers (bt is but‐2‐enoate) bridged by 4,4′‐bipyridyl dioxide (bno) spacers into sets of parallel chains; these linear arrays are interconnected by aqua‐mediated hydrogen bonds into broad two‐dimensional structures, which in turn interact with each other though the hydrogen‐bonded bridged bno solvent units. Both independent bno units in the structures are bisected by symmetry centres.  相似文献   

10.
Three isotypic rare earth complexes, catena‐poly[[aquabis(but‐2‐enoato‐κ2O,O′)yttrium(III)]‐bis(μ‐but‐2‐enoato)‐κ3O,O′:O3O:O,O′‐[aquabis(but‐2‐enoato‐κ2O,O′)yttrium(III)]‐μ‐4,4′‐(ethane‐1,2‐diyl)dipyridine‐κ2N:N′], [Y2(C4H5O2)6(C12H12N2)(H2O)2], the gadolinium(III) analogue, [Gd2(C4H5O2)6(C12H12N2)(H2O)2], and the gadolinium(III) analogue with a 4,4′‐(ethene‐1,2‐diyl)dipyridine bridging ligand, [Gd2(C4H5O2)6(C12H10N2)(H2O)2], are one‐dimensional coordination polymers made up of centrosymmetric dinuclear [M(but‐2‐enoato)3(H2O)]2 units (M = rare earth), further bridged by centrosymmetric 4,4′‐(ethane‐1,2‐diyl)dipyridine or 4,4′‐(ethene‐1,2‐diyl)dipyridine spacers into sets of chains parallel to the [20] direction. There are intra‐chain and inter‐chain hydrogen bonds in the structures, the former providing cohesion of the linear arrays and the latter promoting the formation of broad planes parallel to (010).  相似文献   

11.
In coordination chemistry and crystal engineering, many factors influence the construction of coordination polymers and the final frameworks depend greatly on the organic ligands used. The diverse coordination modes of N‐donor ligands have been employed to assemble metal–organic frameworks. Carboxylic acid ligands can deprotonate completely or partially when bonding to metal ions and can also act as donors or acceptors of hydrogen bonds; they are thus good candidates for the construction of supramolecular architectures. We synthesized under reflux or hydrothermal conditions two new alkaline earth(II) complexes, namely poly[(1,10‐phenanthroline‐κ2N,N′)bis(μ‐3‐phenylprop‐2‐enoato‐κ3O,O′:O)calcium(II)], [Ca(C10H7O2)2(C10H8N2)]n, (1), and poly[(1,10‐phenanthroline‐κ2N,N′)(μ3‐3‐phenylprop‐2‐enoato‐κ4O:O,O′:O′)(μ‐3‐phenylprop‐2‐enoato‐κ3O,O′:O)barium(II)], [Ba(C10H7O2)2(C10H8N2)]n, (2), and characterized them by FT–IR and UV–Vis spectroscopies, thermogravimetric analysis (TGA) and single‐crystal X‐ray diffraction analysis, as well as by powder X‐ray diffraction (PXRD) analysis. Complex (1) features a chain topology of type 2,4 C4, where the Ca atoms are connected by O and N atoms, forming a distorted bicapped trigonal prismatic geometry. Complex (2) displays chains of topology type 2,3,5 C4, where the Ba atom is nine‐coordinated by seven O atoms of bridging/chelating carboxylate groups from two cinnamate ligands and by two N atoms from one phenanthroline ligand, forming a distorted tricapped prismatic arrangement. Weak C—H…O hydrogen bonds and π–π stacking interactions between phenanthroline ligands are responsible to the formation of a supramolecular three‐dimensional network. The thermal decompositions of (1) and (2) in the temperature range 297–1173 K revealed that they both decompose in three steps and transform to the corresponding metal oxide.  相似文献   

12.
The title compound, bis(2,2′‐methyl­imino­diethano­lato)‐1κ3O,N,O′;3κ3O,N,O′‐di‐μ3‐propane‐1,3‐diolato‐1:2:3κ8O:O,O′:O′‐μ‐propane‐1,3‐diolato‐1:3κ2O:O′‐propane‐1,3‐diolato‐2κ2O,O′‐trititanium(IV), [Ti3(C5H11NO2)2(C3H6O2)4], has four 1,3‐propane­diolate ligands binding in three different modes. Two ligands chelate adjacent Ti atoms with normal μ3‐O bridges, giving typical edge‐sharing of the Ti distorted octahedra, one chelating to the central Ti atom with no μ‐bridging, and the other spanning the cluster, binding only to the outermost Ti atoms. The two methyl­imino­diethano­late ligands each coordinate to the outer Ti atoms via their N and two O atoms. The Ti—O bond lengths range, in a self‐consistent fashion, from 1.816 (2) to 2.082 (2) Å, while the average Ti—N distance is 2.391 (3) Å.  相似文献   

13.
The reaction of 0.67 molar equivalents of the O,N,O′‐tridentate zwitterionic Schiff base (2Z,4E)‐4‐[(2‐hydroxyphenyl)iminio]pent‐2‐en‐2‐olate (H2L) with one equivalent of zinc(II) acetate in methanol affords a novel trinuclear ZnII cluster, di‐μ‐acetato‐1:2κ2O:O′;2:3κ2O:O′‐dimethanol‐1κO,3κO‐bis{μ‐2‐[(2E,3Z)‐4‐oxidopent‐3‐en‐2‐ylideneamino]phenolato}‐1:2κ4O2,N,O4:O4;2:3κ4O4:O2,N,O4‐trizinc(II), [Zn3(C11H11NO2)2(C2H3O2)2(CH4O)2], (I), in which two bridging acetate ligands link the terminal square‐based pyramidal ZnII ions to the approximately tetrahedral ZnII ion at the core of the cluster. The ZnO4 coordination group of the central ZnII ion is established by two bridging phenolate and two bridging acetate O atoms. The remaining four coordination sites of each terminal ZnII ion are occupied by methanol and deprotonated H2L. Furthermore, the Zn‐bound methanol hydroxyl groups are involved in complementary hydrogen bonding with the Zn‐bound enolate O atom of a neighbouring molecule, about an inversion centre in each case. The structure of (I) is therefore best described as an extended one‐dimensional hydrogen‐bonded chain of trinuclear ZnII clusters.  相似文献   

14.
The azide anion is a short bridging ligand that has been used extensively to construct magnetic coordination polymers, and fundamental magneto‐structural correlations have been substantiated by theoretical calculations. The copper(II) coordination polymer poly[bis(μ‐azido‐κ2N1:N1)(μ4‐homophthalato‐κ4O:O′:O′′:O′′′)bis(pyridine‐κN)dicopper(II)], [Cu2(C9H6O4)(N3)2(C5H5N)2]n, was synthesized from homophthalic acid (2‐carboxyphenylacetic acid), pyridine and azide (N3) by a hydrothermal reaction. Single‐crystal structure analysis indicated that it features a one‐dimensional chain structure which is comprised of (μ1,1‐N3)(μ‐synsyn‐COO)2‐ and (μ1,1‐N3)2‐bridged tetranuclear CuII units. Magnetic measurements revealed that the compound exhibits dominant antiferromagnetic behaviour.  相似文献   

15.
The structure of the title compound, poly[(dihydrogenphosphato‐κO)(μ3‐hydrogenphosphato)di‐μ‐oxido‐(1,10‐phenanthroline)copper(II)vanadium(V)], [CuV(HPO4)(H2PO4)O2(C12H8N2)]n, is defined by [(phen)Cu–μ‐(κ2O:O′‐VP2O10H3)2–Cu(phen)] units (phen is 1,10‐phenanthroline), which are connected to neighbouring units through vanadyl bridges. Neighbouring chains have no covalent bonds between them, although they interdigitate through the phen groups viaπ–π interactions.  相似文献   

16.
Two different zinc sulfite compounds have been prepared through the decomposition of pyrosulfite–­di­thionite ions in aqueous solution, viz. a dimeric complex, di‐μ‐sulfito‐κ3O,O′:O′′;κ3O:O′,O′′‐bis­[(4,4′‐di­methyl‐2,2′‐bi­pyridine‐κ2N,N′)­zinc(II)] dihydrate, [Zn2(SO3)2(C12H12N2)2]·2H2O, (I), which was solved and refined from a twinned sample, and an extended polymer, poly­[[aqua(1,10‐phenanthroline‐κ2N,N′)­zinc(II)]‐μ3‐sulfito‐κ2O:O′:O′′‐zinc(II)‐μ3‐sulfito‐κ3O:O:O′], [Zn2(SO3)2(C12H10N2)(H2O)]n, (II). In (I), the dinuclear ZnII complex has a center of symmetry. The cation is five‐coordinate in a square‐pyramidal arrangement, the anion fulfilling a bridging chelating role. Compound (II) comprises two different zinc units, one being five‐coordinate (square pyramidal) and the other four‐coordinate (trigonal pyramidal), and two independent sulfite groups with different binding modes to the cationic centers.  相似文献   

17.
The reaction of the μ3‐oxido‐centred trinuclear isobutyrate cluster [Fe3O(O2CCHMe2)6(H2O)3]+ with an excess of phenol (PhOH) in chloroform produces a novel octanuclear FeIII cluster, cyclo‐tetra‐μ2‐hydroxido‐dodeca‐μ2‐isobutyrato‐κ24O:O′‐octa‐μ2‐phenolato‐κ16O:O′‐octairon(III) phenol hexasolvate monohydrate, [Fe8(C4H7O2)12(C6H5O)8(OH)4]·6C6H5OH·H2O. The neutral cluster is located about a centre of inversion and consists of a planar ring of eight FeIII centres with two types of bridges between adjacent Fe atoms: each Fe atom is bridged to one of its neighbours by a μ‐hydroxide and two 1,3‐bridging carboxylates, or by two phenolate and one 1,3‐bridging isobutyrate ligand. The cavity within the {Fe8} wheel is occupied by a disordered water molecule. Intermolecular O—H...O hydrogen bonds and C—H...π interactions connect the clusters and the phenol solvent molecules to form a three‐dimensional network.  相似文献   

18.
Coordination polymers constructed from metal ions and organic ligands have attracted considerable attention owing to their diverse structural topologies and potential applications. Ligands containing carboxylate groups are among the most extensively studied because of their versatile coordination modes. Reactions of benzene‐1,4‐dicarboxylic acid (H2BDC) and pyridine (py) with ZnII or CoII yielded two new coordination polymers, namely, poly[(μ4‐benzene‐1,4‐dicarboxylato‐κ4O:O′:O′′:O′′′)(pyridine‐κN)zinc(II)], [Zn(C8H4O2)(C5H5N)]n, (I), and catena‐poly[aqua(μ3‐benzene‐1,4‐dicarboxylato‐κ3O:O′:O′′)bis(pyridine‐κN)cobalt(II)], [Co(C8H4O2)(C5H5N)2(H2O)]n, (II). In compound (I), the ZnII cation is five‐coordinated by four carboxylate O atoms from four BDC2− ligands and one pyridine N atom in a distorted square‐pyramidal coordination geometry. Four carboxylate groups bridge two ZnII ions to form centrosymmetric paddle‐wheel‐like Zn22‐COO)4 units, which are linked by the benzene rings of the BDC2− ligands to generate a two‐dimensional layered structure. The two‐dimensional layer is extended into a three‐dimensional supramolecular structure with the help of π–π stacking interactions between the aromatic rings. Compound (II) has a one‐dimensional double‐chain structure based on Co22‐COO)2 units. The CoII cations are bridged by BDC2− ligands and are octahedrally coordinated by three carboxylate O atoms from three BDC2− ligands, one water O atom and two pyridine N atoms. Interchain O—H…O hydrogen‐bonding interactions link these chains to form a three‐dimensional supramolecular architecture.  相似文献   

19.
The title compound, tetrakis(μ‐2,3‐di­methoxy­benzoato)‐κ4O:O′;κ6O,O′:O′‐bis[(2,2′‐bi­pyridine‐N,N′)(2,3‐di­methoxy­benzoato‐O,O′)lanthanum(III)], [La2(2,3‐DMOBA)6(2,2′‐bpy)2], where 2,3‐DMOBA is 2,3‐di­methoxy­benzoate (C9H9O4) and 2,2′‐bpy is 2,2′‐bi­pyridine (C10H8N2), is a dimer with a centre of inversion between the La atoms bridged by four carboxyl­ate ligands. The central La atom is ennea‐coordinated and has a distorted monocapped square‐antiprism geometry.  相似文献   

20.
The binuclear complex bis(2,6‐di‐tert‐butyl‐4‐methylphenolato)‐1κO ,2κO‐(1,2‐dimethoxyethane‐1κ2O ,O ′)bis(μ‐phenylmethanolato‐1:2κ2O :O )(tetrahydrofuran‐2κO )dimagnesium(II), [Mg2(C7H7O)2(C15H23O)2(C4H8O)(C4H10O2)] or [(BHT)(DME)Mg(μ‐OBn)2Mg(THF)(BHT)], (I), was obtained from the complex [(BHT)Mg(μ‐OBn)(THF)]2 by substitution of one tetrahydrofuran (THF) molecule with 1,2‐dimethoxyethane (DME) in toluene (BHT is O‐2,6‐t Bu2‐4‐MeC6H4 and Bn is benzyl). The trinuclear complex bis(2,6‐di‐tert‐butyl‐4‐methylphenolato)‐1κO ,3κO‐tetrakis(μ‐2‐methylphenolato)‐1:2κ4O :O ;2:3κ4O :O‐bis(tetrahydrofuran)‐1κO ,3κO‐trimagnesium(II), [Mg3(C7H7O)4(C15H23O)2(C4H8O)2] or [(BHT)2(μ‐O‐2‐MeC6H4)4(THF)2Mg3], (II), was formed from a mixture of Bu2Mg, [(BHT)Mg(n Bu)(THF)2] and 2‐methylphenol. An unusual tetranuclear complex, bis(μ3‐2‐aminoethanolato‐κ4O :O :O ,N )tetrakis(μ2‐2‐aminoethanolato‐κ3O :O ,N )bis(2,6‐di‐tert‐butyl‐4‐methylphenolato‐κO )tetramagnesium(II), [Mg4(C2H6NO)6(C15H23O)2] or Mg4(BHT)2(OCH2CH2NH2)6, (III), resulted from the reaction between (BHT)2Mg(THF)2 and 2‐aminoethanol. A polymerization test demonstrated the ability of (III) to catalyse the ring‐opening polymerization of ϵ‐caprolactone without activation by alcohol. In all three complexes (I)–(III), the BHT ligand demonstrates the terminal κO‐coordination mode. Complexes (I), (II) and (III) have binuclear rhomboid Mg2O2, trinuclear chain‐like Mg3O4 and bicubic Mg4O6 cores, respectively. A survey of the literature on known polynuclear Mgx Oy core types for ArO–Mg complexes is also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号