首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A unique nickel/organic photoredox co‐catalyzed asymmetric reductive cross‐coupling between α‐chloro esters and aryl iodides is developed. This cross‐electrophile coupling reaction employs an organic reductant (Hantzsch ester), whereas most reductive cross‐coupling reactions use stoichiometric metals. A diverse array of valuable α‐aryl esters is formed under these conditions with high enantioselectivities (up to 94 %) and good yields (up to 88 %). α‐Aryl esters represent an important family of nonsteroidal anti‐inflammatory drugs. This novel synergistic strategy expands the scope of Ni‐catalyzed reductive asymmetric cross‐coupling reactions.  相似文献   

2.
The synthesis of diarylpalladium(II) complexes by twofold aryl C?H bond activation was developed. These intermediates of oxidative cyclization reactions are stabilized by chelation with acetyl groups while still maintaining sufficient reactivity to study their reductive elimination. Four distinct triggers were found for the reductive elimination of these complexes to dibenzofurans and carbazoles. Thermal elimination occurs at very high temperatures, whereas ligand‐promoted and oxidatively induced reductive eliminations proceed readily at room temperature. Under these conditions, no isomerization occurs. In contrast, weak Brønsted acids, such as acetic acid, lead to a sequence of proto‐demetalation, isomerization to a κ3‐diarylpalladium(II) complex, and reductive elimination to non‐symmetrical cyclization products.  相似文献   

3.
A nickel‐catalyzed reductive coupling of aldehydes with alkynes using 1‐phenylethanol as reducing agent has been developed. The key achievement of this work is that we demonstrate environmentally benign 1‐phenylethanol can serve as a viable alternative reducing agent to Et3B, ZnEt2 and R3SiH for the nickel‐catalyzed reductive coupling reaction of aldehyde and alkynes.  相似文献   

4.
A CuI‐catalyzed reductive coupling of ketone‐derived N‐tosylhydrazones with amides is presented. Under the optimized conditions, an array of N‐tosylhydrazones derived from aryl–alkyl and diaryl ketones could couple effectively with a wide variety of (hetero)aryl as well as aliphatic amides to afford the N‐alkylated amides in high yields. The method represents the very few examples for reliably accessing secondary and tertiary amides through a reductive N‐alkylation protocol.  相似文献   

5.
A combinatorial nickel‐catalyzed monofluoroalkylation of aryl halides with unactivated fluoroalkyl halides by reductive cross‐coupling has been developed. This method demonstrated high efficiency, mild conditions, and excellent functional‐group tolerance, thus enabling the late‐stage monofluoroalkylation of diverse drugs. The key to success was the combination of diverse readily available bidentate and monodentate pyridine‐type nitrogen ligands with nickel, which in situ generated a variety of readily tunable catalysts to promote fluoroalkylation with broad scope with respect to both coupling partners. This combinatorial catalysis strategy offers a solution for nickel‐catalyzed reductive cross‐coupling reactions and provides an efficient way to synthesize fluoroalkylated druglike molecules for drug discovery.  相似文献   

6.
A simple five‐step synthesis of fully substituted (4RS,5RS)‐4‐aminopyrazolidin‐3‐ones as analogs of D ‐cycloserine was developed. It comprises a two‐step preparation of 5‐substituted (4RS,5RS)‐4‐(benzyloxycarbonylamino)pyrazolidin‐3‐ones, reductive alkylation at N(1), alkylation of the amidic N(2) with alkyl halides, and simultaneous hydrogenolytic deprotection/reductive alkylation of the primary NH2 group. The synthesis enables an easy stepwise functionalization of the pyrazolidin‐3‐one core with only two types of common reagents, aldehydes (or ketones) and alkyl halides. The structures of products were elucidated by NMR spectroscopy and X‐ray diffraction.  相似文献   

7.
A sequence of two titanium(III)‐catalyzed reductive umpolung reactions is reported that allows the rapid construction of benzazo‐ and benzoxozine building blocks. The first step is a reductive cross‐coupling of quinolones or chromones with Michael acceptors. This reaction proceeds with complete syn‐selectivity for the quinolone functionalization while the anti‐diastereomers are obtained as the major products from chromones. With different reaction conditions, the stereochemical outcome can be altered to afford the syn‐chromanone products as well. A subsequent reductive ketyl radical cyclization forges the tricyclic title compounds in good yields. A stereochemical model explaining the observed stereoselectivities is provided and the product configurations were unambiguously verified by X‐ray analyses and 2D NMR spectroscopic experiments.  相似文献   

8.
9.
3‐Methyl‐1,2,4‐benzotriazine and some of its derivatives were prepared in moderate yields (50–70%) via a reductive cyclization by a PtO2‐catalyzed hydrogenation of the corresponding 2‐nitrophenylhydrazones of the pyruvic acid. The latter compounds were obtained in yields higher than 90% by reacting 2‐nitrophenylhydrazines with sodium pyruvate salt. Three 3‐phenyl‐1,2,4‐benzotriazine compounds were also produced via a reductive cyclization by a Pt/C‐catalyzed hydrogenation of their corresponding 2‐nitrophenylhydrazono‐ethers in high yields (>70%). © 2006 Wiley Periodicals, Inc. Heteroatom Chem 17:166–172, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20200  相似文献   

10.
The condensation of α,β‐unsaturated ketones with substituted o‐aminothiophenols, obtained by reductive cleavage of the corresponding disulfides in the presence of triphenylphosphine, is an effective method for the synthesis of 2,4‐diaryl‐2,3‐dihydro‐1,5‐benzothiazepines under neutral conditions.  相似文献   

11.
Acyclic α,α‐disubstituted β‐phosphonyl esters containing chiral alcoholic auxiliaries were efficiently prepared and evaluated for the lithium naphthalenide‐mediated asymmetric reductive alkylation. Among which, the best diastereoselectivity was received from the substrates bearing a (?)‐phenylmenthyl group in leading to alkylated esters with up to 83:17 dr. The diastereoselectivity is proven to be controlled by the π‐facial differentiation created by the chiral ester as well as the geometry of tetrasubstituted enolates generated by the reductive cleavage of C‐P bond.  相似文献   

12.
Dichloro[1,3‐bis(2,6‐di‐4‐heptylphenyl)imidazol‐2‐ylidene](3‐chloropyridyl)palladium(II) (Pd‐PEPPSI‐IHeptCl), a new, very bulky yet flexible Pd–N‐heterocyclic carbene (NHC) complex has been evaluated in the cross‐coupling of secondary alkylzinc reactants with a wide variety of oxidative addition partners in high yields and excellent selectivity. The desired, direct reductive elimination branched products were obtained with no sign of migratory insertion across electron‐rich and electron‐poor aromatics and all forms of heteroaromatics (five and six membered). Impressively, there is no impact of substituents at the site of reductive elimination (i.e., ortho or even di‐ortho), which has not yet been demonstrated by another catalyst system to date.  相似文献   

13.
A palladium‐catalyzed enantioselective intramolecular σ‐bond cross‐exchange between C?I and C?C bonds is realized, providing chiral indanones bearing an alkyl iodide group and an all‐carbon quaternary stereocenter. Pd/TADDOL‐derived phosphoramidite is found to be an efficient catalytic system for both C?C bond cleavage and alkyl iodide reductive elimination. In addition to aryl iodides, aryl bromides can also be used for this transformation in the presence of KI. Density‐functional theory (DFT) calculation studies support the ring‐opening of cyclobutanones occuring through an oxidative addition/reductive elimination process involving PdIV species.  相似文献   

14.
We have developed a reductive carbonylation method by which unactivated alkyl iodides can be hydroxymethylated to provide one‐carbon‐extended alcohol products under Cu‐catalyzed conditions. The method is tolerant of alkyl β‐hydrogen atoms, is robust towards a wide variety of functional groups, and was applied to primary, secondary, and tertiary alkyl iodide substrates. Mechanistic experiments indicate that the transformation proceeds by atom‐transfer carbonylation (ATC) of the alkyl iodide followed in tandem by two CuH‐mediated reductions in rapid succession. This radical mechanism renders the Cu‐catalyzed system complementary to precious‐metal‐catalyzed reductive carbonylation reactions.  相似文献   

15.
A tandem reduction‐reductive amination reaction has been applied to the synthesis of (±)‐4‐alkyl‐2,3,4,5‐tetrahydro‐1,5‐benzoxazepines and (±)‐4‐alkyl‐1‐benzoyl‐2,3,4,5‐tetrahydro‐1H‐1,5‐benzodiazepines. The nitro aldehydes and ketones required for 1,5‐benzoxazepine ring closures were prepared by nucleophilic aromatic substitution of the alkoxides from several 3‐buten‐1‐ol derivatives with 2‐fluoro‐1‐nitrobenzene followed by ozonolysis. Precursors for the 1,5‐benzodiazepines were prepared by similar addition of N‐(3‐butenyl)benzamide anions to 2‐fluoro‐1‐nitrobenzene followed by ozonolysis. Catalytic hydrogenation of the nitro carbonyl compounds using 5% palladium‐on‐carbon in methanol then gave the target heterocycles by a tandem reduction‐reductive amination sequence. The 1,5‐benzoxazepines were isolated in high yield following chromatographic purification; the 1,5‐benzodiazepines were isolated as solids directly from the hydrogenation mixture and possessed differentiated functionality on the two nitrogen atoms.  相似文献   

16.
The excitation of a RuII photosensitizer in the presence of ascorbic acid leads to the reduction of iminium ions to electron‐rich α‐aminoalkyl radical intermediates, which are rapidly converted into reductive amination products by thiol‐mediated hydrogen atom transfer (HAT). As a result, the reductive amination of carbonyl compounds with amines by photoredox catalysis proceeds in good to excellent yields and with broad substrate scope and good functional group tolerance. The three key features of this work are 1) the rapid interception of electron‐rich α‐aminoalkyl radical intermediates by polarity‐matched HAT in a photoredox reaction, 2) the method of reductive amination by photoredox catalysis itself, and 3) the application of this new method for temporally and spatially controlled reactions on a solid support, as demonstrated by the attachment of a fluorescent dye on an activated cellulose support by photoredox‐catalyzed reductive amination.  相似文献   

17.
The DIBAL‐H promoted reductive pyran ring opening of dialkylpyrano[3,2‐a]carbazoles provides a direct access to a broad range of prenyl‐ and geranyl‐substituted carbazoles. Formation of a pyran ring followed by reductive ring opening represents a new method for the introduction of prenyl and geranyl groups. In the course of the present work, we achieved the first total syntheses of the following eight carbazole alkaloids: clauraila‐E, 7‐hydroxyheptaphylline, 7‐methoxyheptaphylline, mukoenine‐B (clausenatine‐A), mukoenine‐A (girinimbilol), mahanimbinol (mahanimbilol), euchrestine‐A, and isomurrayafoline‐B.  相似文献   

18.
Reported is the first scalable synthesis of rac‐jungermannenones B and C starting from the commercially available and inexpensive geraniol in 10 and 9 steps, respectively. The unique jungermannenone framework is rapidly assembled by an unprecedented regioselective 1,6‐dienyne reductive cyclization reaction which proceeds through a vinyl radical cyclization/allylic radical isomerization mechanism. DFT calculations explain the high regioselectivity observed in the 1,6‐dienyne reductive radical cyclization.  相似文献   

19.
Density functional theory (DFT) calculations have been performed to study the mechanism of the recently reported Co‐catalyzed ligand‐controlled hydroarylation of styrenes as a means of preparing 1,1‐ or 1,2‐diarylalkanes. The present study corroborates the previously proposed three‐step mechanism, comprising C? H activation (C? H oxidative addition), styrene insertion, and reductive elimination. In the C? H activation and reductive elimination steps, our calculations suggest that styrene does not coordinate to the Co center. In the insertion step, styrene is inserted into the Co? H bond rather than the Co? C bond. Furthermore, the rate‐ and regiodetermining step is found to be C? C reductive elimination. It is significant that the regioselectivity observed experimentally has been successfully reproduced by our calculations. More importantly, in analyzing the origin of the ligand‐controlled regioselectivity, we have found that the steric effects of different ligands mainly determine the observed regioselectivity. Both the shape (i.e., “umbrella‐up” or “umbrella‐down”) and bulkiness of the ligand contribute to the steric effect.  相似文献   

20.
The nickel‐catalyzed alkyl–alkyl cross‐coupling (C?C bond formation) and borylation (C?B bond formation) of unactivated alkyl halides reported in the literature show completely opposite reactivity orders in the reactions of primary, secondary, and tertiary alkyl bromides. The proposed NiI/NiIII catalytic cycles for these two types of bond‐formation reactions were studied computationally by means of DFT calculations at the B3LYP level. These calculations indicate that the rate‐determining step for alkyl–alkyl cross‐coupling is the reductive elimination step, whereas for borylation the rate is determined mainly by the atom‐transfer step. In borylation reactions, the boryl ligand involved has an empty p orbital, which strongly facilitates the reductive elimination step. The inability of unactivated tertiary alkyl halides to undergo alkyl–alkyl cross‐coupling is mainly due to the moderately high reductive elimination barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号