首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A chiral Brønsted base catalyzed asymmetric annulation of ortho‐alkynylanilines has been developed to access axially chiral naphthyl‐C2‐indoles via vinylidene ortho‐quinone methide (VQM) intermediates. This strategy provides a unique organocatalytic atroposelective route to axially chiral aryl‐C2‐indole skeletons with excellent enantioselectivity and functional‐group tolerance. This transformation was applicable to decagram‐scale preparation (50.0 g) with perfect enantioselectivity through simple recrystallization. Moreover, the utility of this reaction was demonstrated by a variety of transformations towards chiral naphthyl‐C2‐indoles for a series of carbon–heteroatom bond formations. Furthermore, the prepared axially chiral naphthyl‐C2‐indoles were applied as a chiral skeleton for organocatalytic aza‐Baylis–Hillman reaction and asymmetric formal [4+2] tandem cyclization to give the corresponding adducts in high yields with improved enantioselectivity and diastereoselectivity.  相似文献   

2.
A new class of axially chiral aryl‐alkene‐indole frameworks have been designed, and the first catalytic asymmetric construction of such scaffolds has been established by the strategy of organocatalytic (Z/E)‐selective and enantioselective (4+3) cyclization of 3‐alkynyl‐2‐indolylmethanols with 2‐naphthols or phenols (all >95 : 5 E/Z, up to 98% yield, 97% ee). This reaction also represents the first catalytic asymmetric construction of axially chiral alkene‐heteroaryl scaffolds, which will add a new member to the atropisomeric family. This approach has not only confronted the great challenges in constructing axially chiral alkene‐heteroaryl scaffolds but also provided a powerful strategy for the enantioselective construction of axially chiral aryl‐alkene‐indole frameworks.  相似文献   

3.
This study establishes the first organocatalytic enantioselective synthesis of axially chiral N,N′-bisindoles via chiral phosphoric acid-catalyzed formal (3+2) cycloadditions of indole-based enaminones as novel platform molecules with 2,3-diketoesters, where de novo indole-ring formation is involved. Using this new strategy, various axially chiral N,N′-bisindoles were synthesized in good yields and with excellent enantioselectivities (up to 87 % yield and 96 % ee). More importantly, this class of axially chiral N,N′-bisindoles exhibited some degree of cytotoxicity toward cancer cells and was derived into axially chiral phosphine ligands with high catalytic activity. This study provides a new strategy for enantioselective synthesis of axially chiral N,N′-bisindoles using asymmetric organocatalysis and is the first to realize the applications of such scaffolds in medicinal chemistry and asymmetric catalysis.  相似文献   

4.
Enantioselective construction of axially chiral biaryls by direct C? H bond functionalization reactions has been realized. Novel axially chiral biaryls were synthesized by the direct C? H bond olefination of biaryl compounds, using a chiral [Cp*RhIII] catalyst, in good to excellent yields and enantioselectivities. The obtained axially chiral biaryls were found as suitable ligands for rhodium‐catalyzed asymmetric conjugate additions.  相似文献   

5.
Rhodium‐catalyzed enantioselective desymmetrizing intramolecular hydrosilylation of symmetrically disubstituted hydrosilanes is described. The original axially chiral phenanthroline ligand (S)‐BinThro (Binol‐derived phenanthroline) was found to work as an effective chiral catalyst for this transformation. A chiral silicon stereogenic center is one of the chiral motifs gaining much attention in asymmetric syntheses and the present protocol provides cyclic five‐membered organosilanes incorporating chiral silicon centers with high enantioselectivities (up to 91 % ee). The putative active RhI catalyst takes the form of an N,N,O‐tridentate coordination complex, as determined by several complementary experiments.  相似文献   

6.
This review describes our recent works on the diastereo‐ and enantioselective synthesis of anti‐β‐hydroxy‐α‐amino acid esters using transition‐metal–chiral‐bisphosphine catalysts. A variety of transition metals, namely ruthenium (Ru), rhodium (Rh),iridium (Ir), and nickel (Ni), in combination with chiral bisphosphines, worked well as catalysts for the direct anti‐selective asymmetric hydrogenation of α‐amino‐β‐keto ester hydrochlorides, yielding anti‐β‐hydroxy‐α‐amino acid esters via dynamic kinetic resolution (DKR) in excellent yields and diastereo‐ and enantioselectivities. The Ru‐catalyzed asymmetric hydrogenation of α‐amino‐β‐ketoesters via DKR is the first example of generating anti‐β‐hydroxy‐α‐amino acids. Complexes of iridium and axially chiral bisphosphines catalyze an efficient asymmetric hydrogenation of α‐amino‐β‐keto ester hydrochlorides via dynamic kinetic resolution. A homogeneous Ni–chiral‐bisphosphine complex also catalyzes an efficient asymmetric hydrogenation of α‐amino‐β‐keto ester hydrochlorides in an anti‐selective manner. As a related process, the asymmetric hydrogenation of the configurationally stable substituted α‐aminoketones using a Ni catalyst via DKR is also described.  相似文献   

7.
Catalytic asymmetric synthesis of axially chiral o‐iodoanilides and otert‐butylanilides as useful chiral building blocks was achieved by means of binaphthyl‐modified chiral quaternary ammonium‐salt‐catalyzed N‐alkylations under phase‐transfer conditions. The synthetic utility of axially chiral products was demonstrated in various transformations. For example, axially chiral N‐allyl‐o‐iodoanilide was transformed to 3‐methylindoline by means of radical cyclization with high chirality transfer from axial chirality to C‐centered chirality. Furthermore, stereochemical information on axial chirality in otert‐butylanilides could be used as a template to control the stereochemistry of subsequent transformations. The transition‐state structure of the present phase‐transfer reaction was discussed on the basis of the X‐ray crystal structure of ammonium anilide, which was prepared from binaphthyl‐modified chiral ammonium bromide and o‐iodoanilide. The chiral tetraalkylammonium bromide as a phase‐transfer catalyst recognized the steric difference between the ortho substituents on anilide to obtain high enantioselectivity. The size and structural effects of the ortho substituents on anilide were investigated, and a wide variety of axially chiral anilides that possess various functional groups could be synthesized with high enantioselectivities. This method is the only general way to access a variety of axially chiral anilides in a highly enantioselective fashion reported to date.  相似文献   

8.
A new strategy for enantioselective synthesis of axially chiral naphthyl‐indoles has been established through catalytic asymmetric addition reactions of racemic naphthyl‐indoles with bulky electrophiles. Under chiral phosphoric acid catalysis, azodicarboxylates and o‐hydroxybenzyl alcohols served as bulky but reactive electrophiles that were attacked by C2‐unsubstituted naphthyl‐indoles, which underwent a dynamic kinetic resolution to afford two series of axially chiral naphthyl‐indoles in good yields (up to 98 %) and high enantioselectivities (up to 98:2 er).  相似文献   

9.
Chiral aldehyde catalysis opens new avenues for the activation of simple amines. However, the lack of easy access to structurally diverse chiral aldehyde catalysts has hampered the development of this cutting‐edge field. Herein, we report a Pd‐catalyzed atroposelective C?H naphthylation with 7‐oxabenzonorbornadienes for the preparation of axially chiral biaryls with excellent enantioselectivities (up to >99 % ee). This reaction is scalable and robust, which serves as a key step to provide a rapid access to axially chiral aldehyde catalysts through a three‐step C?H functionalization sequence. These chiral aldehydes exhibit better activities and enantioselectivities than the previously reported organocatalysts in the asymmetric activation of glycine derived amides and dipeptides. Moreover, preliminary investigation also discloses that the aldehyde catalyst can effectively override the intrinsic facial selectivity of chiral dipeptide substrates, showcasing the strong chiral induction ability of this type of novel aldehyde catalysts.  相似文献   

10.
Herein, the first example of chloropalladation‐initiated asymmetric intermolecular carboesterification of alkenes with alkynes by using chiral amine auxiliaries is reported. The use of (1S,2S)‐N1,N1‐dimethylcyclohexane‐1,2‐diamine auxiliaries is essential for providing α‐methylene‐γ‐lactones products in moderate to high yields and excellent enantioselectivities at room temperature. Moreover, the chiral amine auxiliaries can be readily removed by hydrolysis during the reaction process to keep the absolute configuration. This oxygen‐ and water‐promoted asymmetric reaction opens a new window to study asymmetric processes in halopalladation reactions.  相似文献   

11.
The atroposelective synthesis of axially chiral styrenes remains a formidable challenge due to their relatively lower rotational barriers compared to the biaryl atropoisomers. Herein, we describe the construction of axially chiral styrenes through PdII‐catalyzed atroposelective C?H olefination, using a bulky amino amide as a transient chiral auxiliary. Various axially chiral styrenes were produced with good yields and high enantioselectivity (up to 95 % yield and 99 % ee). Carboxylic acid derivatives of the resulting axially chiral styrenes showed superior enantiocontrol over the biaryl counterparts in CoIII‐catalyzed enantioselective C(sp3)?H amidation of thioamide. Mechanistic studies suggest that C?H cleavage is the enantioselectivity‐determining step.  相似文献   

12.
The first enantioselective Satoh–Miura‐type reaction is reported. A variety of C?N axially chiral N‐aryloxindoles have been enantioselectively synthesized by an asymmetric rhodium‐catalyzed dual C?H activation reaction of N‐aryloxindoles and alkynes. High yields and enantioselectivities were obtained (up to 99 % yield and up to 99 % ee). To date, it is also the first example of the asymmetric synthesis of C?N axially chiral compounds by such a C?H activation strategy.  相似文献   

13.
A highly efficient asymmetric ring‐opening/cyclization/retro‐Mannich reaction of cyclopropyl ketones with aryl 1,2‐diamines has been realized using a chiral N,N′‐dioxide/ScIII catalyst. Benzimidazoles containing chiral side chains were generated under mild reaction conditions in excellent outcomes (up to 99 % yield and 97 % ee). This method also provides efficient access to chiral benzimidazole‐substituted amide and cycloheptene derivatives.  相似文献   

14.
The first asymmetric hydrogenation of 3‐ylidenephthalides has been developed using the IrI complex of a spiro[4,4]‐1,6‐nonadiene‐based phosphine‐oxazoline ligand (SpinPHOX) as the catalyst, affording a wide variety of chiral 3‐substituted phthalides in excellent enantiomeric excesses (up to 98 % ee). The utility of the protocol has been demonstrated in the asymmetric synthesis of chiral drugs NBP and BZP precursor, as well as the natural products chuangxinol and typhaphthalide.  相似文献   

15.
It has been established that an unsubstituted cyclopentadienyl rhodium(III) (CpRhIII) complex is a highly active catalyst for the aerobic oxidative ortho C−H bond olefination of sterically demanding ortho-substituted benzamides with alkenes. This catalysis was successfully applied to the diastereoselective synthesis of axially chiral N,N-dialkylbenzamides. The combination of the ruthenium(II)-catalyzed enantioselective hydrogenation and the CpRhIII-catalyzed diastereoselective ortho C−H bond olefination enabled the asymmetric synthesis of axially chiral N,N-dialkylbenzamide derivatives with high ee values.  相似文献   

16.
We have discovered that the racemization of configurationally stable, axially chiral 2,2′‐dihydroxy‐1,1′‐biaryls proceeds with a catalytic amount of a cyclopentadienylruthenium(II) complex at 35–50 °C. Combining this racemization procedure with lipase‐catalyzed kinetic resolution led to the first lipase/metal‐integrated dynamic kinetic resolution of racemic axially chiral biaryl compounds. The method was applied to the synthesis of various enantio‐enriched C1‐ and C2‐symmetric biaryl diols in yields of up to 98 % and enantiomeric excesses of up to 98 %, which paves the way for new developments in the field of asymmetric synthesis.  相似文献   

17.
A simple and ubiquitously present group, free amine, is used as a directing group to synthesize axially chiral biaryl compounds by PdII‐catalyzed atroposelective C?H olefination. A broad range of axially chiral biaryl‐2‐amines can be obtained in good yields with high enantioselectivities (up to 97 % ee). Chiral spiro phosphoric acid (SPA) proved to be an efficient ligand and the loading could be reduced to 1 mol % without erosion of enantiocontrol in gram‐scale synthesis. The resulting axially chiral biaryl‐2‐amines also provide a platform for the synthesis of a set of chiral ligands.  相似文献   

18.
The first catalytic asymmetric construction of 3,3′‐bisindole skeletons bearing both axial and central chirality has been established by organocatalytic asymmetric addition reactions of 2‐substituted 3,3′‐bisindoles with 3‐indolylmethanols (up to 98 % yield, all >95:5 d.r., >99 % ee). This reaction also represents the first highly enantioselective construction of axially chiral 3,3′‐bisindole skeletons, and utilizes the strategy of introducing a bulky group to the ortho‐position of prochiral 3,3′‐bisindoles. This reaction not only provides a good example for simultaneously controlling axial and central chirality in one operation, but also serves as a new strategy for catalytic enantioselective construction of axially chiral 3,3′‐bisindole backbones from prochiral substrates.  相似文献   

19.
An enantioselective C?H arylation of phosphine oxides with o‐quinone diazides catalyzed by an iridium(III) complex bearing an atropchiral cyclopentadienyl (Cpx) ligand and phthaloyl tert‐leucine as co‐catalyst is reported. The method allows access to a) P‐chiral biaryl phosphine oxides, b) atropo‐enantioselective construction of sterically demanding biaryl backbones, and also c) selective assembly of axial and P‐chiral compounds in excellent yields and diastereo‐ and enantioselectivities. Enantiospecific reductions provide monodentate chiral phosphorus(III) compounds having structures and biaryl backbones with proven importance as ligands in asymmetric catalysis.  相似文献   

20.
The asymmetric desymmetrization of meso‐2‐alkynylbenzenediols through the use of a combination of axially chiral diphosphine(AuCl)2 precatalysts and silver salt co‐catalysts gave optically active isochromene compounds with high enantioselectivities in good yields. The corresponding dl ‐diol isomers underwent efficient kinetic resolution to give the cyclized isochromenes and recovered diols with high enantioselectivities under similar conditions. The high reactivity and selectivity in the desymmetrization of the meso‐diols is independent of the combination of axially chiral diphosphine(AuCl)2 precatalyst and silver salt co‐catalyst, whereas the corresponding tricarbonylchromium complexes of alkynylbenzenediols were affected by the combination of the diphosphine(AuCl)2 and silver salt. The reactivity was largely dependent on the nature of the gold(I) species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号