首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a promising solar‐energy material, the electronic structure and optical properties of Beta phase indium sulfide (β‐In2S3) are still not thoroughly understood. This paper devotes to solve these issues using density functional theory calculations. β‐In2S3 is found to be an indirect band gap semiconductor. The roles of its atoms at different lattice positions are not exactly identical because of the unique crystal structure. Additonally, a significant phenomenon of optical anisotropy was observed near the absorption edge. Owing to the low coordination numbers of the In3 and S2 atoms, the corresponding In3‐5s states and S2‐3p states are crucial for the composition of the band‐edge electronic structure, leading to special optical properties and excellent optoelectronic performances.  相似文献   

2.
3.
Knowledge of the photocatalytic H2 evolution mechanism is of great importance for designing active catalysts toward a sustainable energy supply. An atomic‐level insight, design, and fabrication of single‐site Co1‐N4 composite as a prototypical photocatalyst for efficient H2 production is reported. Correlated atomic characterizations verify that atomically dispersed Co atoms are successfully grafted by covalently forming a Co1‐N4 structure on g‐C3N4 nanosheets by atomic layer deposition. Different from the conventional homolytic or heterolytic pathway, theoretical investigations reveal that the coordinated donor nitrogen increases the electron density and lowers the formation barrier of key Co hydride intermediate, thereby accelerating H–H coupling to facilitate H2 generation. As a result, the composite photocatalyst exhibits a robust H2 production activity up to 10.8 μmol h−1, 11 times higher than that of pristine counterpart.  相似文献   

4.
《中国化学》2018,36(2):157-161
The three‐dimensional nanoflower‐like β‐In2S3 composited with carbon nanotubes (CNTs) has been synthesized by a single mode microwave‐assisted hydrothermal technique. The In2S3 and CNTs nanocomposites (In2S3@CNTs) were investigated as the anode materials of lithium batteries (LIBs) and the electromagnetic wave absorption materials. For LIBs applications, the In2S3@CNTs nanocomposite exhibited excellent cycling stability with a high reversible charge capacity of 575 mA⋅h⋅g–1 after 300 cycles at 0.5 A⋅g–1. In addition, the In2S3@CNTs used as electromagnetic wave absorber displayed a maximum reflection loss of –42.75 dB at 11.96 GHz with a thickness of 1.55 mm.  相似文献   

5.
A conceptually new all‐solid‐state asymmetric supercapacitor based on atomically thin sheets is presented which offers the opportunity to optimize supercapacitor properties on an atomic level. As a prototype, β‐Co(OH)2 single layers with five‐atoms layer thickness were synthesized through an oriented‐attachment strategy. The increased density‐of‐states and 100 % exposed hydrogen atoms endow the β‐Co(OH)2 single‐layers‐based electrode with a large capacitance of 2028 F g?1. The corresponding all‐solid‐state asymmetric supercapacitor achieves a high cell voltage of 1.8 V and an exceptional energy density of 98.9 Wh kg?1 at an ultrahigh power density of 17 981 W kg?1. Also, this integrated nanodevice exhibits excellent cyclability with 93.2 % capacitance retention after 10 000 cycles, holding great promise for constructing high‐energy storage nanodevices.  相似文献   

6.
Solar CO2 reduction efficiency is largely limited by poor photoabsorption, sluggish electron–hole separation, and a high CO2 activation barrier. Defect engineering was employed to optimize these crucial processes. As a prototype, BiOBr atomic layers were fabricated and abundant oxygen vacancies were deliberately created on their surfaces. X‐ray absorption near‐edge structure and electron paramagnetic resonance spectra confirm the formation of oxygen vacancies. Theoretical calculations reveal the creation of new defect levels resulting from the oxygen vacancies, which extends the photoresponse into the visible‐light region. The charge delocalization around the oxygen vacancies contributes to CO2 conversion into COOH* intermediate, which was confirmed by in situ Fourier‐transform infrared spectroscopy. Surface photovoltage spectra and time‐resolved fluorescence emission decay spectra indicate that the introduced oxygen vacancies promote the separation of carriers. As a result, the oxygen‐deficient BiOBr atomic layers achieve visible‐light‐driven CO2 reduction with a CO formation rate of 87.4 μmol g?1 h?1, which was not only 20 and 24 times higher than that of BiOBr atomic layers and bulk BiOBr, respectively, but also outperformed most previously reported single photocatalysts under comparable conditions.  相似文献   

7.
TiO2 nanotubes were successfully co‐doped with sulfur and Ti3+ states using a facile annealing treatment in H2/H2S gas mixture. The obtained nanotubes were investigated for their photocatalytic performance and characterized by SEM, XRD, XPS, EPR, IPCE, IMPS and Mott‐Schottky measurements. The synthesized co‐doped TiO2 nanotubes show an enhanced photocatalytic hydrogen production rate compared to tubes that were treated only in pure H2 or H2S atmosphere—this without the presence of any co‐catalyst. It was found that sulfur in co‐doped TiO2 exists in the form of S2? and a small quantity of S4+/S6+, which leads to a narrowing of the band gap. However, the enhanced absorption of light in the visible range is not the key reason for the improved photocatalytic performance. We ascribe the enhanced photocatalytic activity to a synergetic effect of S mid‐gap states and disordered Ti3+ defects that facilitate photo generated electron transfer.  相似文献   

8.
We have measured, by means of ultrafast x‐ray absorption and optical spectroscopy, the M‐O (M=Fe, Co) and Co‐N metal to ligand bond length change as a function of time and the formation and decay of the excited states and intermediate species, after excitation with a 267 nm femtosecond pulse. These experimental data combined with DFT calculations allowed us to determine the mechanism of electron transfer operating in the redox reaction of two metal‐ligand complexes, [M(III)(C2O4)3]3‐ and [Co(III)(NH3)6 ]3+. Based on the data we find that, even though both molecules are excited into their charge transfer band, the redox reaction of [M(III)(C2O4)3]3‐ proceeds via intermolecular electron transfer while [Co(III)(NH3)6 ]3+ electron transfer mechanism is intramolecular.  相似文献   

9.
The New Mixed Valent Chalcogenoindates MIn7X9 (M = Rb, Cs; X = S, Se): Structural Chemistry, X‐Ray and HRTEM Investigations Systematic X‐ray and HRTEM investigations on the ternary systems alkali metal (or thallium)–indium–chalcogen proved the existence of mixed valent solids with the simultaneous occurrence of indium species in different states of oxidation. Additionally to the earlier described solids MIn5S7 (M: Na, K, Tl: isotypic to InIn5S7 = In6S7 and TlIn5S7) and KIn5S6 (isotyp to TlIn5S6) in the actual work we present with MIn7X9 (M: Rb, Cs; X: S, Se) a new structure type which also contains indium in the states of oxidation +3 and +2. The formal state of oxidation In2+ corresponds to (In2)4+ ions. A reasonable ionic formulation of these structures is given by: MIn5S7 = M+ 3[In3+] [(In2)4+] 7[S2–] (M = Na, K, Tl), MIn5S6 = M+ [In3+] 2[(In2)4+] 6[S2–] (M = K, Tl), MIn7X9 = M+ 3[In3+] 2[(In2)4+] 9[S2–]. The three structure types show common two dimensional structure elements which contain ethane analogous In2X6 units and cis and trans edge sharing double octahedron chains. The main interest of this work is a crystalchemical discussion taking into account the new compounds MIn7X9 and the results of special HRTEM investigations on MIn7X9. The HRTEM investigations aim on the identification and subsequent preparation of new phases which initially might be visible as nano size crystals or inclusions in the HRTEM only.  相似文献   

10.
Limited by the relatively sluggish charge‐carrier separation in semiconductors, the photocatalytic performance is still far below what is expected. Herein, a model of ZnIn2S4 (ZIS) nanosheets with oxygen doping is put forward to obtain in‐depth understanding of the role that doping atoms play in photocatalysis. It shows enhanced photocatalytic activity compared with pristine ZIS. The electron dynamics analyzed by ultrafast transient absorption spectroscopy reveals that the average recovery lifetime of photoexcited electrons is increased by 1.53 times upon oxygen incorporation into the ZIS crystals, indicating enhanced separation of photoexcited carriers in oxygen‐doped ZIS nanosheets. As expected, the oxygen‐doped ZIS nanosheets show a remarkably improved photocatalytic activity with a hydrogen evolution rate of up to 2120 μmol h?1 g?1 under visible‐light irradiation, which is 4.5 times higher than that of the pristine ZIS nanosheets.  相似文献   

11.
Directly splitting water into H2 and O2 with solar light is extremely important; however, the overall efficiency of water splitting still remains extremely low. Two types of ultrathin semiconductor layers with the same elements and the same thicknesses were designed to uncover how different atomic arrangements influence water‐splitting efficiency thermodynamically and kinetically. As an example, tetrahedrally coordinated blende and octahedrally coordinated rocksalt CoO atomic layers with nearly the same thicknesses were synthesized for the first time. The blende CoO atomic layers have a smaller Eg and abundant d–d internal transition features relative to the rocksalt CoO atomic layers, which ensure enhanced visible‐light harvesting ability. Density functional theory calculations reveal that the Bader charge for Co atoms in blende CoO atomic layers is larger than that of the rocksalt CoO atomic layers, which facilitates photocarrier transfer kinetics, as verified by photoluminescence spectra and time‐resolved fluorescence emission decay spectra. In situ FTIR spectra and energy calculations reveal that the *OOH dissociation step is the rate‐limiting step, where the blende CoO atomic layers possess a smaller *OOH dissociation energy thanks to their higher Bader charge and stronger steric effect, as confirmed by the elongated Co?OOH bonds. The blende CoO atomic layers exhibit visible‐light‐driven H2 and O2 formation rates of 4.43 and 2.63 μmol g?1 h?1, roughly 3.7 times higher than those of the rocksalt CoO atomic layers.  相似文献   

12.
The double perovskite family, A2MIMIIIX6, is a promising route to overcome the lead toxicity issue confronting the current photovoltaic (PV) standout, CH3NH3PbI3. Given the generally large indirect band gap within most known double perovskites, band‐gap engineering provides an important approach for targeting outstanding PV performance within this family. Using Cs2AgBiBr6 as host, band‐gap engineering through alloying of InIII/SbIII has been demonstrated in the current work. Cs2Ag(Bi1−x Mx )Br6 (M=In, Sb) accommodates up to 75 % InIII with increased band gap, and up to 37.5 % SbIII with reduced band gap; that is, enabling ca. 0.41 eV band gap modulation through introduction of the two metals, with smallest value of 1.86 eV for Cs2Ag(Bi0.625Sb0.375)Br6. Band structure calculations indicate that opposite band gap shift directions associated with Sb/In substitution arise from different atomic configurations for these atoms. Associated photoluminescence and environmental stability of the three‐metal systems are also assessed.  相似文献   

13.
Mesoporous silica synthesized from the cocondensation of tetraethoxysilane and silylated carbon dots containing an amide group has been adopted as the carrier for the in situ growth of TiO2 through an impregnation–hydrothermal crystallization process. Benefitting from initial complexation between the titania precursor and carbon dot, highly dispersed anatase TiO2 nanoparticles can be formed inside the mesoporous channel. The hybrid material possesses an ordered hexagonal mesostructure with p6mm symmetry, a high specific surface area (446.27 m2 g?1), large pore volume (0.57 cm3 g?1), uniform pore size (5.11 nm), and a wide absorption band between λ=300 and 550 nm. TiO2 nanocrystals are anchored to the carbon dot through Ti?O?N and Ti?O?C bonds, as revealed by X‐ray photoelectron spectroscopy. Moreover, the nitrogen doping of TiO2 is also verified by the formation of the Ti?N bond. This composite shows excellent adsorption capabilities for 2,4‐dichlorophenol and acid orange 7, with an electron‐deficient aromatic ring, through electron donor–acceptor interactions between the carbon dot and organic compounds instead of the hydrophobic effect, as analyzed by the contact angle analysis. The composite can be photocatalytically recycled through visible‐light irradiation after adsorption. The narrowed band gap, as a result of nitrogen doping, and the photosensitization effect of carbon dots are revealed to be coresponsible for the visible‐light activity of TiO2. The adsorption capacity does not suffer any clear losses after being recycled three times.  相似文献   

14.
A highly efficient Z‐scheme photocatalytic system constructed with 1D CdS and 2D CoS2 exhibited high photocatalytic hydrogen‐evolution activity of 5.54 mmol h?1 g?1 with an apparent quantum efficiency of 10.2 % at 420 nm. More importantly, its interfacial charge migration pathway was unraveled: The electrons are efficiently transferred from CdS to CoS2 through a transition atomic layer connected by Co–S5.8 coordination, thus resulting in more photogenerated carriers participating in surface reactions. Furthermore, the charge‐trapping and charge‐transfer processes were investigated by transient absorption spectroscopy, which gave an estimated charge‐separation yield of approximately 91.5 % and a charge‐separated‐state lifetime of approximately (5.2±0.5) ns in CdS/CoS2. This study elucidates the key role of interfacial atomic layers in heterojunctions and will facilitate the development of more efficient Z‐scheme photocatalytic systems.  相似文献   

15.
The energetic and electronic structures of V‐doped anatase TiO2 have been investigated systematically by the GGA+U approach, including replacement of Ti by V in the absence and presence of oxygen vacancies and the presence of an interstitial site. It was found that V should exist as a V4+ ion in the replacement of Ti in the anatase lattice, the electron transitions of which to the conduction band from V 3d states are responsible for the experimentally observed visible light absorption. The influence of V dopant concentration on the electronic and magnetic properties is also discussed, such as the influence of the U value in systems containing oxygen vacancies and spin flip phenomena for interstitial V‐doping.  相似文献   

16.
β‐Carotene in n‐hexane was examined by femtosecond transient absorption and stimulated Raman spectroscopy. Electronic change is separated from vibrational relaxation with the help of band integrals. Overlaid on the decay of S1 excited‐state absorption, a picosecond process is found that is absent when the C9‐methyl group is replaced by ethyl or isopropyl. It is attributed to reorganization on the S1 potential energy surface, involving dihedral angles between C6 and C9. In Raman studies, electronic states S2 or S1 were selected through resonance conditions. We observe a broad vibrational band at 1770 cm?1 in S2 already. With 200 fs it decays and transforms into the well‐known S1 Raman line for an asymmetric C=C stretching mode. Low‐frequency activity (<800 cm?1) in S2 and S1 is also seen. A dependence of solvent lines on solute dynamics implies intermolecular coupling between β‐carotene and nearby n‐hexane molecules.  相似文献   

17.
An active and stable photocatalyst to directly split water is desirable for solar‐energy conversion. However, it is difficult to accomplish overall water splitting without sacrificial electron donors. Herein, we demonstrate a strategy via constructing a single site to simultaneously promote charge separation and catalytic activity for robust overall water splitting. A single Co1‐P4 site confined on g‐C3N4 nanosheets was prepared by a facile phosphidation method, and identified by electron microscopy and X‐ray absorption spectroscopy. This coordinatively unsaturated Co site can effectively suppress charge recombination and prolong carrier lifetime by about 20 times relative to pristine g‐C3N4, and boost water molecular adsorption and activation for oxygen evolution. This single‐site photocatalyst exhibits steady and high water splitting activity with H2 evolution rate up to 410.3 μmol h−1 g−1, and quantum efficiency as high as 2.2 % at 500 nm.  相似文献   

18.
To evaluate the electronic and optical properties of Cr‐doped anatase TiO2, three possible Cr‐doped TiO2 models, including Cr at a Ti site (model I), Cr at a Ti site with an oxygen vacancy compensation (model II), and an interstitial Cr site (model III), are studied by means of first principles density functional theory calculations. In model I, the splitting behavior of the Cr 3d states and the insulating properties are successfully depicted by the GGA+U method, from which it is proposed that Cr at a Ti site should exist as Cr4+ instead of the generally believed Cr3+. As a result, the electron transitions between these impurity states, the conduction band (CB), and the valence band (VB), as well as the d–d transitions between occupied and unoccupied Cr 3d states, provide a reasonable explanation for the experimentally observed major and minor absorption bands. In models II and III, the impurity states and associated optical transition processes—as well as the corresponding electron configurations—are examined.  相似文献   

19.
Low‐cost layered oxides free of Ni and Co are considered to be the most promising cathode materials for future sodium‐ion batteries. Biphasic Na0.78Cu0.27Zn0.06Mn0.67O2 obtained via superficial atomic‐scale P3 intergrowth with P2 phase induced by Zn doping, consisting of inexpensive transition metals, is a promising cathode for sodium‐ion batteries. The P3 phase as a covering layer in this composite shows not only in excellent electrochemical performance but also its tolerance to moisture. The results indicate that partial Zn substitutes can effectively control biphase formation for improving the structural/electrochemical stability as well as the ionic diffusion coefficient. Based on in situ synchrotron X‐ray diffraction coupled with electron‐energy‐loss spectroscopy, a possible Cu2+/3+ redox reaction mechanism has now been revealed.  相似文献   

20.
We fabricated films of cubic indium oxide (In2O3) by chemical bath deposition (CBD) for solar water splitting. The fabricated films were characterized by X‐ray diffraction analysis, Raman scattering, X‐ray photoelectron spectroscopy, and scanning electron microscopy, and the three‐dimensional microstructure of the In2O3 cubes was elucidated. The CBD deposition time was varied, to study its effect on the growth of the In2O3 microcubes. The optimal deposition time was determined to be 24 h, and the corresponding film exhibited a photocurrent density of 0.55 mA cm?2. Finally, the film stability was tested by illuminating the films with light from an AM 1.5 filter with an intensity of 100 mW cm?2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号