首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The problem of reduction of the sonic boom level by heating the flow in front of the body is solved numerically. A combined method of “phantom bodies” is used for calculations. The sonic boom generated by an axisymmetric thin body for the flight Mach number of 2 with different levels of energy supply to the incoming flow is calculated. The calculation results show that the sonic boom can be reduced by means of local heat supply to a supersonic gas flow. Reduction of the sonic boom level is provided by specific gas-dynamic features of the flow behind the heat supply zone.  相似文献   

2.
The results of numerical integration of the Euler equations governing two-dimensional and axisymmetric flows of an ideal (inviscid and non-heat-conducting) gas with local supersonic zones are presented. The subject of the study is the formation of shocks closing local supersonic zones. The flow in the vicinity of the initial point of the closing shock is calculated on embedded, successively refined grids with an accuracy much greater than that previously achieved. The calculations performed, together with the analysis of certain controversial issues, leave no doubt that it is the intersection of C ?-characteristics proceeding from the sonic line inside the supersonic zone that is responsible for the closing shock formation.  相似文献   

3.
Shock unsteadiness creation and propagation: experimental analysis   总被引:1,自引:0,他引:1  
The possibility of creating unsteady distortions of the tip shock by waves emitted from an aircraft is assessed experimentally. The model chosen is a cylindrical fore body equipped with a spike. This configuration is known for generating an important level of unsteadiness around the spike in supersonic regime. The wind tunnel Mach number is equal to 2. The experiments show that waves emitted from this source propagate along the tip shock and interact with it. It is then assessed that this interaction produces a periodic distortion of the shock that propagates to the external flow. Unsteady pressure sensors, high speed schlieren films, hot wire probing and laser Doppler velocimetry are used as complementary experimental means. The final result is a coherent representation of the complex mechanism of wave propagation that has been evidenced. The principle of creating unsteady shock deformation by onboard equipments could be examined as a possibly promising method of sonic boom control.  相似文献   

4.
Characteristics of unsteady type IV shock/shock interaction   总被引:1,自引:0,他引:1  
Characteristics of the unsteady type IV shock/shock interaction of hypersonic blunt body flows are investigated by solving the Navier–Stokes equations with high-order numerical methods. The intrinsic relations of flow structures to shear, compression, and heating processes are studied and the physical mechanisms of the unsteady flow evolution are revealed. It is found that the instantaneous surface-heating peak is caused by the fluid in the “hot spot” generated by an oscillating and deforming jet bow shock (JBS) just ahead of the body surface. The features of local shock/boundary layer interaction and vortex/boundary layer interaction are clarified. Based on the analysis of flow evolution, it is identified that the upstream-propagating compression waves are associated with the interaction of the JBS and the shear layers formed by a supersonic impinging jet, and then the interaction of the freestream bow shocks and the compression waves results in entropy and vortical waves propagating to the body surface. Further, the feedback mechanism of the inherent unsteadiness of the flow field is revealed to be related to the impinging jet. A feedback model is proposed to reliably predict the dominant frequency of flow evolution. The results obtained in this study provide physical insight into the understanding of the mechanisms relevant to this complex flow.  相似文献   

5.
The possibility of improving the efficiency of cryogenic forcing on the parameters of the hanging shock determining the length of the region of minimization of the sonic boom (middle zone) generated by a modified power-law body is studied. The effect of distributed injection of the coolant from the body surface on the formation of a perturbed flow near the body and at large distances from the body is considered. The scheme of distributed injection and the regime of coolant exhaustion are demonstrated to exert a significant effect on the length of the middle zone of the sonic boom. A scheme of cryogenic forcing is determined, which ensures reduction of bow shock wave intensity by more than 40% at distances corresponding to 7000 body diameters. The mechanism of cryogenic forcing on the flow structure near the body is discussed. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 2, pp. 136–144, March–April, 2009.  相似文献   

6.
The possibility of controlling the sonic boom level by means of cooling the surface of a flying vehicle is discussed. The effect of surface cooling on the formation of the perturbed flow structure at large distances from the vehicle is demonstrated by an example of a modified power-law body of revolution. The intensity of the intermediate shock wave and the perturbed pressure pulse near the body are seen to decrease, which expands the altitude range of the region where the sonic boom is reduced (down to 50%). At larger distances from the body, cryogenic forcing ensures a 12% decrease in the bow shock wave intensity. The possibility of controlling the process of formation of wave structures near the surface, such as barrel shock waves, is demonstrated. An explanation of the cryogenic forcing mechanism is offered. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 6, pp. 88–98, November–December, 2008.  相似文献   

7.
The propagation of shock waves in a medium with a nonuniform distribution of the parameters is the subject of recently published research [1–3]. The present paper deals with the problem of the gas flow ahead of the forward point of a blunt body moving at supersonic speed in air with variable parameters. The chemical reaction processes behind the shock front are taken into account. As a result of numerical calculations by the method of characteristics with isolation of the forward shock the time-dependent position of the shock front and the distributions of the composition and gas dynamic parameters in the shock layer are found. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 170–172, November–December, 1986.  相似文献   

8.
9.
Assume an axisymmetric blunt body or a symmetric profile is located in a uniform supersonic combustible gas mixture stream with the parameters M1, p1, and T1. A detached shock is formed ahead of the body and the mixture passing through the, shock is subjected to compression and heating. Various flow regimes behind the shock wave may be realized, depending on the freestream conditions. For low velocities, temperatures, or pressures in the free stream, the mixture heating may not be sufficient for its ignition, and the usual adiabatic flow about the body will take place. In the other limiting case the temperature behind the adiabatic shock and the degree of gas compression in the shock are so great that the mixture ignites instantaneously and burns directly behind the shock wave in an infinitesimally thin zone, i. e., a detonation wave is formed. The intermediate case corresponds to the regime in which the width of the reaction zone is comparable with the characteristic linear dimension of the problem, for example, the radius of curvature of the body at the stagnation point.The problem of supersonic flow of a combustible mixture past a body with the formation of a detonation front has been solved in [1, 2]. The initial mixture and the combustion products were considered perfect gases with various values of the adiabatic exponent .These studies investigated the effect of the magnitude of the reaction thermal effect and flow velocity on the flow pattern and the distribution of the gasdynamic functions behind the detonation wave.In particular, the calculations showed that the strong detonation wave which is formed ahead of the sphere gradually transforms into a Chapman-Jouguet wave at a finite distance from the axis of symmetry. For planar flow in the case of flow about a circular cylinder it is shown that the Chapman-Jouguet regime is established only asymptotically, i. e., at infinity.This result corresponds to the conclusions of [3, 4], in which a theoretical analysis is given of the asymptotic behavior of unsteady flows with planar, spherical, and cylindrical detonation waves.Available experimental data show that in many cases the detonation wave does not degenerate into a Chapman-Jouguet wave as it decays, bur rather at some distance from the body it splits into an adiabatic shock wave and a slow combustion front.The position of the bifurcation point cannot be determined within the framework of the zero thickness detonation front theory [1], and for the determination of the location of this point we must consider the structure of the combustion zone in the detonation wave. Such a study was made with very simple assumptions in [5].The present paper presents a numerical solution of the problem of combustible mixture flow about a sphere with a very simple model for the structure of the combustion zone, in which the entire flow behind the bow shock wave consists of two regions of adiabatic flow-an induction region and a region of equilibrium flow of products of combustion separated by the combustion front in which the mixture burns instantaneously. The solution is presented only for subsonic and transonic flow regions.  相似文献   

10.
低声爆设计方法已成为新一代军民用超声速飞机研制过程中必须解决的关键难题之一。针对传统SGD低声爆外形反设计方法无法对声爆近场非线性效应进行描述和分析的缺点,提出了利用CFD方法求解得到的声爆近场压力分布代替F函数进行低声爆反设计的方法。声爆近场预测采用点-点对接的结构/非结构混合网格,充分利用非结构网格对复杂外形适应性强和结构化网格计算效率高的优点。结果分析表明,基于改进后的低声爆反设计方法得到的方案在声爆超压以及感觉噪声级等方面都比基于原始SGD方法得到的方案有较大改善。  相似文献   

11.
We consider the direct problem in the theory of the axisymmetric Laval nozzle (including sonic transition) for the steady flow of an inviscid and nonheat-conducting gas of finite electrical conductivity. The problem is solved by numerical integration of the equations of unsteady gas flow using an explicit difference scheme that was proposed by Godunov [1,2], and was used to calculate steady and unsteady flows of a nonconducting gas in nozzles by Ivanov and Kraiko [3]. The subsonic and the supersonic flows of a conducting gas in an axisymmetric channel when there is no external electric field, the magnetic field is meridional, and the magnetic Reynolds numbers are small have previously been completely investigated. Thus, Kheins, Ioller and Élers [4] investigated experimentally and theoretically the flow of a conducting gas in a cylindrical pipe when there is interaction between the flow and the magnetic field of a loop current that is coaxial with the pipe. Two different approaches were used in the theoretical analysis in [4]: linearization with respect to the parameter S of the magnetogasdynamic interaction and numerical calculation by the method of characteristics. The first approach was used for weakly perturbed subsonic and supersonic flows and the solutions obtained in analytic form hold only for small S. This is the approach used by Bam-Zelikovich [5] to investigate subsonic and supersonic jet flows through a current loop. The numerical calculations of supersonic flows in a cylindrical pipe in [4] were restricted to comparatively small values of S since, as S increases, shock waves and subsonic waves appear in the flow. Katskova and Chushkin [6] used the method of characteristics to calculate the flow of the type in the supersonic part of an axisymmetric nozzle with a point of inflection. The flow at the entrance to the section of the nozzle under consideration was supersonic and uniform, while the magnetic field was assumed to be constant and parallel to the axis of symmetry. The plane case was also studied in [6]. The solution of the direct problem is the subject of a paper by Brushlinskii, Gerlakh, and Morozov [7], who considered the flow of an electrically conducting gas between two coaxial electrodes of given shape. There was no applied magnetic field, and the induced magnetic field was in the direction perpendicular to the meridional plane. The problem was solved numerically in [7] using a standard process. However, the boundary conditions adopted, which were chosen largely to simplify the calculations, and the accuracy achieved only allowed the authors [7] to make reliable judgments about the qualitative features of the flow. Recently, in addition to [7], several papers have been published [8–10] in which the authors used a similar approach to solve the direct problem in the theory of the Laval nozzle (in the case of a nonconducting gas).Translated from Izvestiya Akademiya Nauk SSSR, Mekhanika Zhidkosti i Gaza., No. 5, pp. 14–20, September–October, 1971.In conclusion the author wishes to thank M. Ya. Ivanov, who kindly made available his program for calculating the flow of a conducting gas, and also A. B. Vatazhin and A. N. Kraiko for useful advice.  相似文献   

12.
The laws of heat transfer associated with the interaction of underexpanded supersonic gas jets and obstacles or blunt bodies have been investigated, for example, in [1–3]. Similar problems of nonuniform flow occur when bodies move in the wake behind other bodies; however, in this case the laws of heat transfer have so far received little attention [4–8]. It has been established that for a certain Reynolds number and flow nonuniformity parameters a zone of reverse-circulatory flow develops near the front of the blunt body. However, the conditions of transition to separated flow have not been determined. This paper presents a self-similar solution of the equations of the viscous shock layer near the stagnation line in supersonic flow past an axisymmetric blunt body located behind another body. On the basis of this solution a separationless flow criterion is proposed. The effect of the nonuniformity and the Reynolds number on the shock standoff distance, the convective heat flux and the friction drag of the blunt body is investigated. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 120–125, November–December, 1986. In conclusion the authors wish to thank I. G. Eremeitsev for useful suggestions and G. A. Tirskii for discussing their work.  相似文献   

13.
颗粒材料中致密波结构研究   总被引:1,自引:1,他引:0  
采用一维两相流模型与相应颗粒构形应力函数,研究了致密波的形成及其结构.用简化两相流模型系统地讨论致密波对有关因素的依赖关系.分析指出:小于基体材料音速的致密波仅能在非理想颗粒材料中存在,从波前到波后,所有状态物理量光滑过渡.大于基体材料音速的致密波,波头可能存在间断.应力函数与致密粘性确定后,致密波速度决定致密波结构、宽度、终态压实度.采用一维两相流模型模拟了活塞驱动颗粒床形成致密波这一动态过程.用线方法(MOL)对该方程组求数值解.计算表明,经过短暂的非稳态过程,颗粒床中形成一稳态致密波.分析了活塞速度与初始孔隙率对致密波结构的影响,并对简化两相流模型与两相流模型的计算结果进行了对比.  相似文献   

14.
The stability of a boundary layer with volume heat supply on the attachment line of a swept wing is investigated within the framework of the linear theory at supersonic inviscid-free-stream Mach numbers. The results of numerical calculations of the flow stability and neutral curves are presented for the flow on the leading edge of a swept wing with a swept angle χ=60° at various free-stream Mach numbers. The effect of volume heat supply on the characteristics of boundary layer stability on the attachment line is studied at a surface temperature equal to the temperature of the external inviscid flow. It is shown that in the case of a supersonic external inviscid flow volume heat supply may result in an increase in the critical Reynolds number and stabilization of disturbances corresponding to large wave numbers. For certain energy supply parameters the situation is reversed, the unstable disturbances corresponding to the main flow-instability zone are stabilized but another zone of flow-instability with small wave numbers and a significantly lower critical Reynolds number appears.  相似文献   

15.
D. Igra  J. Falcovitz 《Shock Waves》2010,20(5):441-444
This paper describes a numerical simulation of bow shock formation ahead of a sphere at steady supersonic flow in the Mach number range of 1.025–1.20. Turbulent viscous flow results are presented using the Spalart–Allmaras turbulence model. The purpose of this study is to determine the shock standoff distance for a spherical projectile at slightly supersonic free flight speeds. Results are compared to experimental data, including double exposure holographic interferograms obtained from a 40 mm polycarbonate sphere launched by a light gas gun. The shock standoff distance was determined from the interferograms. The present numerical simulations were found to agree with previously published data, and reached down to M = 1.025—a range where almost no previously published data exists. The computed flow structure and shock wave locations agree well with recently obtained free-flight interferograms.  相似文献   

16.
The case of supersonic flow over a blunt body when another gas is injected through the surface of the body in accordance with a given law is theoretically investigated. If molecular transport processes are neglected, the flow between the shock wave and the surface of the body should be regarded as two-layer, that is, as consisting of the flow in the shock layer between the shock wave and the contact surface and the flow in the layer of injected gas. A numerical solution of the problem is obtained near the front of the body and its accuracy is estimated. Approximate analytic solutions are obtained in the injected-gas layer: a constant-density solution and a solution of the boundary-layer type in the local similarity approximation. Near the flow axis the numerical and analytic solutions are fairly close, but at a distance from the axis the assumptions made reduce the accuracy of the approximate solutions. The flow in question can serve as a gas-dynamic model of a series of problems describing the radiant heating of blunt bodies in a hypersonic flow. In the presence of intense radiative heat transfer, vaporization is so great that the thickness of the vapor layer is comparable with the thickness of the shock layer. Moreover, the thermal shielding of various kinds of obstacles in channels through which a radiating plasma flows can be organized by means of the forced injection of a strong absorber. The formulation of a similar problem was reported in [1], but the results of the solution were not given. A two-layer model of the flow of an ideal gas over a blunt body was used in [2, 3] for the analysis of radiative heat transfer. In [2] the neighborhood of the stagnation point is considered. In [3] preliminary results relating to two-layer flow over blunt cones are presented. The solution is obtained by Maslen's approximate method.Moscow. Translated from Izvestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza, No. 2, pp. 89–97, March–April, 1972.  相似文献   

17.
The influence of the nitrogen dissociation on the interactions due to the interference of two planar shock waves in a hypersonic high enthalpy flow is theoretically investigated for infinite reaction rates. The two limiting cases of infinitely slow and infinitely fast reactions are modelled as a perfect gas and an ideal dissociating gas in chemical equilibrium.To investigate the influence of finite reaction rates on the interactions of shock waves, experiments are performed in the high enthalpy shock tunnel Göttingen (HEG) with a wind tunnel model consisting of a wedge type shock generator and a transversally mounted cylinder. The pressure and heat transfer loads resulting from the shock wave interferences are measured and the flow field is visualized by means of interferograms. The experimental results are compared with the results of a numerical simulation for a dissociating nitrogen flow and with the experimental results for a perfect gas flow.  相似文献   

18.
The time-dependent interaction of an incident shock wave with a sphere is considered in the presence of a heat supply region ahead of the body. The reflected shock configuration and the flow pattern are numerically investigated. The efficiencies of heat shields of different shapes are compared with respect to the longitudinal force acting on the sphere.  相似文献   

19.
Results of experimental investigations and numerical simulations of supersonic gas flows in radial nozzles with different nozzle widths are presented. It is demonstrated that different types of the flow are formed in the nozzle with a fixed nozzle radius and different nozzle widths: supersonic flows with oblique shock waves inducing boundary layer separation are formed in wide nozzles, and flows with a normal pseudoshock separating the supersonic and subsonic flow domains are formed in narrow nozzles (micronozzles). The pseudoshock structure is studied, and the total pressure loss in the case of the gas flow in a micronozzle is determined.  相似文献   

20.
A complex shock configuration with two triple points can occur during the interaction between an external oblique compression shock and the detached shock ahead of a blunt body (for instance, ahead of a wing or stabilizer edge). This results in the formation of a high-pressure, low-entropy supersonic gas jet [1–6]. Here two flow modes are possible [1], which differ substantially in the intensity of the thermal and dynamic effects of the stream on the blunt body: mode I corresponds to the impact of a supersonic jet [2–6], while the supersonic jet in mode II does not reach the body surface in the domain of shock interaction because of curvature under the effect of a pressure drop. Conditions for the realization of the above-mentioned flow modes are investigated experimentally and theoretically, and an approximate method is proposed to determine the magnitude of the compression shock standoff in the interaction domain. Blunt bodies with plane and cylindrical leading edges are examined. The results of a computation agree satisfactorily with experimental data.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 97–103, January–February, 1976.The author is grateful to V. V. Lunev for discussing the research and for useful remarks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号