首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the equation $$\begin{aligned} (-\Delta _{\mathbb{H }^n})^{\gamma } w=f(w)\quad \text{ in } \mathbb{H }^{n}, \end{aligned}$$ where \((-\Delta _{\mathbb{H }^n})^\gamma \) corresponds to the fractional Laplacian on hyperbolic space for \(\gamma \in (0,1)\) and \(f\) is a smooth nonlinearity that typically comes from a double well potential. We prove the existence of heteroclinic connections in the following sense; a so-called layer solution is a smooth solution of the previous equation converging to \(\pm 1\) at any point of the two hemispheres \(S_\pm \subset \partial _\infty \mathbb{H }^n\) and which is strictly increasing with respect to the signed distance to a totally geodesic hyperplane \(\Pi \) . We prove that under additional conditions on the nonlinearity uniqueness holds up to isometry. Then we provide several symmetry results and qualitative properties of the layer solutions. Finally, we consider the multilayer case, at least when \(\gamma \) is close to one.  相似文献   

2.
In the framework of toroidal Pseudodifferential operators on the flat torus \({\mathbb {T}}^n := ({\mathbb {R}} / 2\pi {\mathbb {Z}})^n\) we begin by proving the closure under composition for the class of Weyl operators \(\mathrm {Op}^w_\hbar (b)\) with symbols \(b \in S^m (\mathbb {T}^n \times \mathbb {R}^n)\) . Subsequently, we consider \(\mathrm {Op}^w_\hbar (H)\) when \(H=\frac{1}{2} |\eta |^2 + V(x)\) where \(V \in C^\infty ({\mathbb {T}}^n)\) and we exhibit the toroidal version of the equation for the Wigner transform of the solution of the Schrödinger equation. Moreover, we prove the convergence (in a weak sense) of the Wigner transform of the solution of the Schrödinger equation to the solution of the Liouville equation on \(\mathbb {T}^n \times {\mathbb {R}}^n\) written in the measure sense. These results are applied to the study of some WKB type wave functions in the Sobolev space \(H^{1} (\mathbb {T}^n; {\mathbb {C}})\) with phase functions in the class of Lipschitz continuous weak KAM solutions (positive and negative type) of the Hamilton–Jacobi equation \(\frac{1}{2} |P+ \nabla _x v (P,x)|^2 + V(x) = \bar{H}(P)\) for \(P \in \ell {\mathbb {Z}}^n\) with \(\ell >0\) , and to the study of the backward and forward time propagation of the related Wigner measures supported on the graph of \(P+ \nabla _x v\) .  相似文献   

3.
Based on a motivation coming from the study of the metric structure of the category of finite dimensional vector spaces over a finite field \(\mathbb {F}\) , we examine a family of graphs, defined for each pair of integers \(1 \le k \le n\) , with vertex set formed by all injective linear transformations \(\mathbb {F}^k \rightarrow \mathbb {F}^n\) and edges corresponding to pairs of mappings, \(f\) and \(g\) , with \(\lambda (f,g)= \dim \mathrm{Im }(f-g)=1 \) . For \(\mathbb {F}\cong \mathrm{GF }(q)\) , this graph will be denoted by \(\mathrm{INJ }_q(k,n)\) . We show that all such graphs are vertex transitive and Hamiltonian and describe the full automorphism group of each \(\mathrm{INJ }_q (k,n)\) for \(k . Using the properties of line-transitive groups, we completely determine which of the graphs \(\mathrm{INJ }_q (k,n)\) are Cayley and which are not. The Cayley ones consist of three infinite families, corresponding to pairs \((1,n),\,(n-1,n)\) , and \((n,n)\) , with \(n\) and \(q\) arbitrary, and of two sporadic examples \(\mathrm{INJ }_{2} (2,5)\) and \(\mathrm{INJ }_{2}(3,5)\) . Hence, the overwhelming majority of our graphs is not Cayley.  相似文献   

4.
It is proved that there does not exist any non zero function in \(L^p({\mathbb R}^n)\) with \(1\le p\le 2n/\alpha \) if its Fourier transform is supported by a set of finite packing \(\alpha \) -measure where \(0<\alpha <n\) . It is shown that the assertion fails for \(p>2n/\alpha \) . The result is applied to prove \(L^p\) Wiener Tauberian theorems for \({\mathbb R}^n\) and \(M(2)\) .  相似文献   

5.
By variational methods and Morse theory, we prove the existence of uncountably many \((\alpha ,\beta )\in \mathbb R ^2\) for which the equation \(-\mathrm{div}\, A(x, \nabla u)=\alpha u_+^{p-1} -\beta u_-^{p-1}\) in \(\Omega \) , has a sign changing solution under the Neumann boundary condition, where a map \(A\) from \(\overline{\Omega }\times \mathbb R ^N\) to \(\mathbb R ^N\) satisfying certain regularity conditions. As a special case, the above equation contains the \(p\) -Laplace equation. However, the operator \(A\) is not supposed to be \((p-1)\) -homogeneous in the second variable. In particular, it is shown that generally the Fu?ík spectrum of the operator \(-\mathrm{div}\, A(x, \nabla u)\) on \(W^{1,p}(\Omega )\) contains some open unbounded subset of \(\mathbb R ^2\) .  相似文献   

6.
Consider a general domain \(\varOmega \subseteq {\mathbb {R}}^n, n\ge 2\) , and let \(1 < q <\infty \) . Our first result is based on the estimate for the gradient \(\nabla p \in G^q(\varOmega )\) in the form \(\Vert \nabla p\Vert _q \le C \,\sup |\langle \nabla p,\nabla v\rangle _{\varOmega }|/\Vert \nabla v\Vert _{q'}\) , \(\nabla v \in G^{q'}(\varOmega ), q' = \frac{q}{q-1}\) , with some constant \(C=C(\varOmega ,q)>0\) . This estimate was introduced by Simader and Sohr (Mathematical Problems Relating to the Navier–Stokes Equations. Series on Advances in Mathematics for Applied Sciences, vol. 11, pp. 1–35. World Scientific, Singapore, 1992) for smooth bounded and exterior domains. We show for general domains that the validity of this gradient estimate in \(G^q(\varOmega )\) and in \(G^{q'}(\varOmega )\) is necessary and sufficient for the validity of the Helmholtz decomposition in \(L^q(\varOmega )\) and in \(L^{q'}(\varOmega )\) . A new aspect concerns the estimate for divergence free functions \(f_0 \in L^q_{\sigma }(\varOmega )\) in the form \(\Vert f_0\Vert _q \le C \sup |\langle f_0,w\rangle _{\varOmega }|/ \Vert w\Vert _{q'}, w\in L^{q'}_{\sigma }(\varOmega )\) , for the second part of the Helmholtz decomposition. We show again for general domains that the validity of this estimate in \(L^q_{\sigma }(\varOmega )\) and in \(L^{q'}_{\sigma }(\varOmega )\) is necessary and sufficient for the validity of the Helmholtz decomposition in \(L^q(\varOmega )\) and in \(L^{q'}(\varOmega )\) .  相似文献   

7.
For \(\Omega \) varying among open bounded sets in \(\mathbb R ^n\) , we consider shape functionals \(J (\Omega )\) defined as the infimum over a Sobolev space of an integral energy of the kind \(\int _\Omega [ f (\nabla u) + g (u) ]\) , under Dirichlet or Neumann conditions on \(\partial \Omega \) . Under fairly weak assumptions on the integrands \(f\) and \(g\) , we prove that, when a given domain \(\Omega \) is deformed into a one-parameter family of domains \(\Omega _\varepsilon \) through an initial velocity field \(V\in W ^ {1, \infty } (\mathbb R ^n, \mathbb R ^n)\) , the corresponding shape derivative of \(J\) at \(\Omega \) in the direction of \(V\) exists. Under some further regularity assumptions, we show that the shape derivative can be represented as a boundary integral depending linearly on the normal component of \(V\) on \(\partial \Omega \) . Our approach to obtain the shape derivative is new, and it is based on the joint use of Convex Analysis and Gamma-convergence techniques. It allows to deduce, as a companion result, optimality conditions in the form of conservation laws.  相似文献   

8.
In this paper, we study the global boundary regularity of the \(\bar{\partial }\) - equation on an annulus domain \(\Omega \) between two strictly \(q\) -convex domains with smooth boundaries in \(\mathbb{C }^n\) for some bidegree. To this finish, we first show that the \(\bar{\partial }\) -operator has closed range on \(L^{2}_{r, s}(\Omega )\) and the \(\bar{\partial }\) -Neumann operator exists and is compact on \(L^{2}_{r,s}(\Omega )\) for all \(r\ge 0\) , \(q\le s\le n-q- 1\) . We also prove that the \(\bar{\partial }\) -Neumann operator and the Bergman projection operator are continuous on the Sobolev space \(W^{k}_{r,s}(\Omega )\) , \(k\ge 0\) , \(r\ge 0\) , and \(q\le s\le n-q-1\) . Consequently, the \(L^{2}\) -existence theorem for the \(\bar{\partial }\) -equation on such domain is established. As an application, we obtain a global solution for the \(\bar{\partial }\) equation with Hölder and \(L^p\) -estimates on strictly \(q\) -concave domain with smooth \(\mathcal C ^2\) boundary in \(\mathbb{C }^n\) , by using the local solutions and applying the pushing out method of Kerzman (Commun Pure Appl Math 24:301–380, 1971).  相似文献   

9.
Consider a weak instationary solution \(u\) of the Navier–Stokes equations in a domain \(\varOmega \subsetneq \mathbb {R}^3\) with Dirichlet boundary data \(u=0\) on \(\partial \Omega \) , i.e., \(u\) solves the Navier–Stokes system in the sense of distributions and $$\begin{aligned} u \in L^\infty \left( 0,T;L^2(\varOmega )\right) \cap L^2 \left( 0,T;W^{1,2}_0(\varOmega )\right) . \end{aligned}$$ Since the pioneering work of J. Leray 1933/34 it is an open problem whether weak solutions are unique and smooth. The main step—to nowadays knowledge—is to show that the given weak solution is a strong one in the sense of J. Serrin, i.e., \(u \in L^s \left( 0,T;L^q(\varOmega )\right) \) where \(s>2, q>3\) and \(\frac{2}{s}+ \frac{3}{q}=1\) . This review reports on recent progress in this important problem, considering this issue locally on an initial interval \([0,T')\) , \(T'<T\) , i.e., the problem of optimal initial values \(u(0)\) , globally on \([0,T)\) , and from a one-sided point of view \(u \in L^s \left( T'-\varepsilon ,T';L^q(\varOmega )\right) \) or \(u \in L^s\left( T',T'+\varepsilon ;L^q(\varOmega )\right) \) . Further topics deal with the energy (in-)equality, uniqueness of weak solutions, blow-up phenomena and the analysis in critical spaces for the whole space case.  相似文献   

10.
Consider the instationary Boussinesq equations in a smooth bounded domain \(\Omega \subseteq \mathbb {R}^3\) with initial values \(u_0 \in L^2_{\sigma }(\Omega )\) , \( \theta _0 \in L^2(\Omega )\) and gravitational force \(g\) . We call \((u,\theta )\) strong solution if \((u,\theta )\) is a weak solution and additionally Serrin’s condition \(u \in L^s(0,T; L^q(\Omega ))\) holds where \( 1 satisfy \(\frac{2}{s} + \frac{3}{q} =1\) . In this paper we show that \(\int _0^{\infty } \Vert e^{-tA} u_0 \Vert _q^s \, dt < \infty \) is necessary and sufficient for the existence of such a strong solution \((u,\theta )\) in a sufficiently small interval \([0,T[\, , 0 < T\le \infty \) . Furthermore we show that strong solutions are uniquely determined and that they are smooth if the data are smooth. The crucial point is the fact that we have required no additional integrability condition for \(\theta \) in the definition of a strong solution \((u,\theta )\) .  相似文献   

11.
We obtain the boundedness on ˙Fα,qp(Rn) for the Poisson summation and Gauss summation. Their maximal operators are proved to be bounded from˙Fα,qp(Rn) to L∞(Rn).For the maximal operator of the Bochner-Riesz summation, we prove that it is bounded from˙Fα,qp(Rn) to Lpnn-pα,∞(Rn).  相似文献   

12.
Let \(R\) be any \((n+1)!\) -torsion free ring and \(F,D: R\rightarrow R\) be additive mappings satisfying \(F(x^{n+1})=(\alpha (x))^nF(x)+\sum \nolimits _{i=1}^n (\alpha (x))^{n-i}(\beta (x))^iD(x)\) for all \(x\in R\) , where \(n\) is a fixed integer and \(\alpha \) , \(\beta \) are automorphisms of \(R\) . Then, \(D\) is Jordan left \((\alpha , \beta )\) -derivation and \(F\) is generalized Jordan left \((\alpha , \beta )\) -derivation on \(R\) and if additive mappings \(F\) and \(D\) satisfying \(F(x^{n+1})=F(x)(\alpha (x))^n+\sum \nolimits _{i=1}^n (\beta (x))^iD(x)(\alpha (x))^{n-i}\) for all \(x\in R\) . Then, \(D\) is Jordan \((\alpha , \beta )\) -derivation and \(F\) is generalized Jordan \((\alpha , \beta )\) -derivation on \(R\) . At last some immediate consequences of the above theorems have been given.  相似文献   

13.
14.
We consider the problem of approximating the unknown density \(u\in L^2(\Omega ,\lambda )\) of a measure \(\mu \) on \(\Omega \subset \mathbb {R}^n\) , absolutely continuous with respect to some given reference measure \(\lambda \) , only from the knowledge of finitely many moments of \(\mu \) . Given \(d\in \mathbb {N}\) and moments of order \(d\) , we provide a polynomial \(p_d\) which minimizes the mean square error \(\int (u-p)^2d\lambda \) over all polynomials \(p\) of degree at most \(d\) . If there is no additional requirement, \(p_d\) is obtained as solution of a linear system. In addition, if \(p_d\) is expressed in the basis of polynomials that are orthonormal with respect to \(\lambda \) , its vector of coefficients is just the vector of given moments and no computation is needed. Moreover \(p_d\rightarrow u\) in \(L^2(\Omega ,\lambda )\) as \(d\rightarrow \infty \) . In general nonnegativity of \(p_d\) is not guaranteed even though \(u\) is nonnegative. However, with this additional nonnegativity requirement one obtains analogous results but computing \(p_d\ge 0\) that minimizes \(\int (u-p)^2d\lambda \) now requires solving an appropriate semidefinite program. We have tested the approach on some applications arising from the reconstruction of geometrical objects and the approximation of solutions of nonlinear differential equations. In all cases our results are significantly better than those obtained with the maximum entropy technique for estimating \(u\) .  相似文献   

15.
Let \(M_w = ({\mathbb {P}}^1)^n /\!/\hbox {SL}_2\) denote the geometric invariant theory quotient of \(({\mathbb {P}}^1)^n\) by the diagonal action of \(\hbox {SL}_2\) using the line bundle \(\mathcal {O}(w_1,w_2,\ldots ,w_n)\) on \(({\mathbb {P}}^1)^n\) . Let \(R_w\) be the coordinate ring of \(M_w\) . We give a closed formula for the Hilbert function of \(R_w\) , which allows us to compute the degree of \(M_w\) . The graded parts of \(R_w\) are certain Kostka numbers, so this Hilbert function computes stretched Kostka numbers. If all the weights \(w_i\) are even, we find a presentation of \(R_w\) so that the ideal \(I_w\) of this presentation has a quadratic Gröbner basis. In particular, \(R_w\) is Koszul. We obtain this result by studying the homogeneous coordinate ring of a projective toric variety arising as a degeneration of \(M_w\) .  相似文献   

16.
Let \(R\) be a finite chain ring with \(|R|=q^m\) , \(R/{{\mathrm{Rad}}}R\cong \mathbb {F}_q\) , and let \(\Omega ={{\mathrm{PHG}}}({}_RR^n)\) . Let \(\tau =(\tau _1,\ldots ,\tau _n)\) be an integer sequence satisfying \(m=\tau _1\ge \tau _2\ge \cdots \ge \tau _n\ge 0\) . We consider the incidence matrix of all shape \(\varvec{m}^s=(\underbrace{m,\ldots ,m}_s)\) versus all shape \(\tau \) subspaces of \(\Omega \) with \(\varvec{m}^s\preceq \tau \preceq \varvec{m}^{n-s}\) . We prove that the rank of \(M_{\varvec{m}^s,\tau }(\Omega )\) over \(\mathbb {Q}\) is equal to the number of shape \(\varvec{m}^s\) subspaces. This is a partial analog of Kantor’s result about the rank of the incidence matrix of all \(s\) dimensional versus all \(t\) dimensional subspaces of \({{\mathrm{PG}}}(n,q)\) . We construct an example for shapes \(\sigma \) and \(\tau \) for which the rank of \(M_{\sigma ,\tau }(\Omega )\) is not maximal.  相似文献   

17.
Let \(\eta : C_{f,N}\rightarrow \mathbb {P}^1\) be a cyclic cover of \(\mathbb {P}^1\) of degree \(N\) which is totally and tamely ramified for all the ramification points. We determine the group of fixed points of the cyclic covering group \({{\mathrm{Aut}}}(\eta )\simeq \mathbb {Z}/ N \mathbb {Z}\) acting on the Jacobian \(J_N:={{\mathrm{Jac}}}(C_{f,N})\) . For each prime \(\ell \) distinct from the characteristic of the base field, the Tate module \(T_\ell J_N\) is shown to be a free module over the ring \(\mathbb {Z}_\ell [T]/(\sum _{i=0}^{N-1}T^i)\) . We also study the subvarieties of \(J_N\) and calculate the degree of the induced polarization on the new part \(J_N^\mathrm {new}\) of the Jacobian.  相似文献   

18.
We consider a class of weak solutions of the heat flow of biharmonic maps from \(\Omega \subset \mathbb{R }^n\) to the unit sphere \(\mathbb{S }^L\subset \mathbb{R }^{L+1}\) , that have small renormalized total energies locally at each interior point. For any such a weak solution, we prove the interior smoothness, and the properties of uniqueness, convexity of hessian energy, and unique limit at \(t=\infty \) . We verify that any weak solution \(u\) to the heat flow of biharmonic maps from \(\Omega \) to a compact Riemannian manifold \(N\) without boundary, with \(\nabla ^2 u\in L^q_tL^p_x\) for some \(p>\frac{n}{2}\) and \(q>2\) satisfying (1.12), has small renormalized total energy locally and hence enjoys both the interior smoothness and uniqueness property. Finally, if an initial data \(u_0\in W^{2,r}(\mathbb{R }^n, N)\) for some \(r>\frac{n}{2}\) , then we establish the local existence of heat flow of biharmonic maps \(u\) , with \(\nabla ^2 u\in L^q_tL^p_x\) for some \(p>\frac{n}{2}\) and \(q>2\) satisfying (1.12).  相似文献   

19.
The paper deals with standing wave solutions of the dimensionless nonlinear Schrödinger equation where the potential \(V_\lambda :\mathbb {R}^N\rightarrow \mathbb {R}\) is close to an infinite well potential \(V_\infty :\mathbb {R}^N\rightarrow \mathbb {R}\) , i. e. \(V_\infty =\infty \) on an exterior domain \(\mathbb {R}^N\setminus \Omega \) , \(V_\infty |_\Omega \in L^\infty (\Omega )\) , and \(V_\lambda \rightarrow V_\infty \) as \(\lambda \rightarrow \infty \) in a sense to be made precise. The nonlinearity may be of Gross–Pitaevskii type. A standing wave solution of \((NLS_\lambda )\) with \(\lambda =\infty \) vanishes on \(\mathbb {R}^N\setminus \Omega \) and satisfies Dirichlet boundary conditions, hence it solves We investigate when a standing wave solution \(\Phi _\infty \) of the infinite well potential \((NLS_\infty )\) gives rise to nearby solutions \(\Phi _\lambda \) of the finite well potential \((NLS_\lambda )\) with \(\lambda \gg 1\) large. Considering \((NLS_\infty )\) as a singular limit of \((NLS_\lambda )\) we prove a kind of singular continuation type results.  相似文献   

20.
We consider Monge–Kantorovich problems corresponding to general cost functions \(c(x,y)\) but with symmetry constraints on a Polish space \(X\times X\) . Such couplings naturally generate anti-symmetric Hamiltonians on \(X\times X\) that are \(c\) -convex with respect to one of the variables. In particular, if \(c\) is differentiable with respect to the first variable on an open subset \(X\) in \( \mathbb {R}^d\) , we show that for every probability measure \(\mu \) on \(X\) , there exists a symmetric probability measure \(\pi _0\) on \(X\times X\) with marginals \(\mu \) , and an anti-symmetric Hamiltonian \(H\) such that \(\nabla _2H(y, x)=\nabla _1c(x,y)\) for \( \pi _0\) -almost all \((x,y) \in X \times X.\) If \(\pi _0\) is supported on a graph \((x, Sx)\) , then \(S\) is necessarily a \(\mu \) -measure preserving involution (i.e., \(S^2=I\) ) and \(\nabla _2H(x, Sx)=\nabla _1c(Sx,x)\) for \(\mu \) -almost all \(x \in X.\) For monotone cost functions such as those given by \(c(x,y)=\langle x, u(y)\rangle \) or \(c(x,y)=-|x-u(y)|^2\) where \(u\) is a monotone operator, \(S\) is necessarily the identity yielding a classical result by Krause, namely that \(u(x)=\nabla _2H(x, x)\) where \(H\) is anti-symmetric and concave-convex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号