首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Extracting latent nonlinear dynamics from observed time-series data is important for understanding a dynamic system against the background of the observed data. A state space model is a probabilistic graphical model for time-series data, which describes the probabilistic dependence between latent variables at subsequent times and between latent variables and observations. Since, in many situations, the values of the parameters in the state space model are unknown, estimating the parameters from observations is an important task. The particle marginal Metropolis–Hastings (PMMH) method is a method for estimating the marginal posterior distribution of parameters obtained by marginalization over the distribution of latent variables in the state space model. Although, in principle, we can estimate the marginal posterior distribution of parameters by iterating this method infinitely, the estimated result depends on the initial values for a finite number of times in practice. In this paper, we propose a replica exchange particle marginal Metropolis–Hastings (REPMMH) method as a method to improve this problem by combining the PMMH method with the replica exchange method. By using the proposed method, we simultaneously realize a global search at a high temperature and a local fine search at a low temperature. We evaluate the proposed method using simulated data obtained from the Izhikevich neuron model and Lévy-driven stochastic volatility model, and we show that the proposed REPMMH method improves the problem of the initial value dependence in the PMMH method, and realizes efficient sampling of parameters in the state space models compared with existing methods.  相似文献   

2.
Sónia R. Bentes  Rui Menezes 《Physica A》2008,387(15):3826-3830
Long memory and volatility clustering are two stylized facts frequently related to financial markets. Traditionally, these phenomena have been studied based on conditionally heteroscedastic models like ARCH, GARCH, IGARCH and FIGARCH, inter alia. One advantage of these models is their ability to capture nonlinear dynamics. Another interesting manner to study the volatility phenomenon is by using measures based on the concept of entropy. In this paper we investigate the long memory and volatility clustering for the SP 500, NASDAQ 100 and Stoxx 50 indexes in order to compare the US and European Markets. Additionally, we compare the results from conditionally heteroscedastic models with those from the entropy measures. In the latter, we examine Shannon entropy, Renyi entropy and Tsallis entropy. The results corroborate the previous evidence of nonlinear dynamics in the time series considered.  相似文献   

3.
Chang-Yong Lee 《Physica A》2009,388(18):3837-3850
We empirically analyze the time series of the Korea Composite Stock Price Index (KOSPI) from March of 1992 to February of 2007 using methods from the hydrodynamic turbulence. To this end, we focus on characteristics of the return and volatility, which are respectively the price change and a measure of the financial market fluctuation over a time interval. With these, we show that the non-Gaussian probability distribution of the return can be modeled by the convolution of the conditional probability distribution of the return given the volatility and the distribution of the volatility per se. From this model, we suggest that the non-Gaussian characteristic of the return results from the fluctuation of the volatility. That is, a large return is partly, if not entirely, due to the market fluctuation in a long time scale influencing the fluctuation in a short time scale via net information flow. We further show that the volatility has a multi-fractal property, which resembles the multifractality of the energy dissipation in the turbulence.  相似文献   

4.
The empirical relationship between the return of an asset and the volatility of the asset has been well documented in the financial literature. Named the leverage effect or sometimes risk-premium effect, it is observed in real data that, when the return of the asset decreases, the volatility increases and vice versa.Consequently, it is important to demonstrate that any formulated model for the asset price is capable of generating this effect observed in practice. Furthermore, we need to understand the conditions on the parameters present in the model that guarantee the apparition of the leverage effect.In this paper we analyze two general specifications of stochastic volatility models and their capability of generating the perceived leverage effect. We derive conditions for the apparition of leverage effect in both of these stochastic volatility models. We exemplify using stochastic volatility models used in practice and we explicitly state the conditions for the existence of the leverage effect in these examples.  相似文献   

5.
Grasping the historical volatility of stock market indices and accurately estimating are two of the major focuses of those involved in the financial securities industry and derivative instruments pricing. This paper presents the results of employing the intrinsic entropy model as a substitute for estimating the volatility of stock market indices. Diverging from the widely used volatility models that take into account only the elements related to the traded prices, namely the open, high, low, and close prices of a trading day (OHLC), the intrinsic entropy model takes into account the traded volumes during the considered time frame as well. We adjust the intraday intrinsic entropy model that we introduced earlier for exchange-traded securities in order to connect daily OHLC prices with the ratio of the corresponding daily volume to the overall volume traded in the considered period. The intrinsic entropy model conceptualizes this ratio as entropic probability or market credence assigned to the corresponding price level. The intrinsic entropy is computed using historical daily data for traded market indices (S&P 500, Dow 30, NYSE Composite, NASDAQ Composite, Nikkei 225, and Hang Seng Index). We compare the results produced by the intrinsic entropy model with the volatility estimates obtained for the same data sets using widely employed industry volatility estimators. The intrinsic entropy model proves to consistently deliver reliable estimates for various time frames while showing peculiarly high values for the coefficient of variation, with the estimates falling in a significantly lower interval range compared with those provided by the other advanced volatility estimators.  相似文献   

6.
We formulate a dynamical fluctuation theory for stationary non-equilibrium states (SNS) which is tested explicitly in stochastic models of interacting particles. In our theory a crucial role is played by the time reversed dynamics. Within this theory we derive the following results: the modification of the Onsager–Machlup theory in the SNS; a general Hamilton–Jacobi equation for the macroscopic entropy; a non-equilibrium, nonlinear fluctuation dissipation relation valid for a wide class of systems; an H theorem for the entropy. We discuss in detail two models of stochastic boundary driven lattice gases: the zero range and the simple exclusion processes. In the first model the invariant measure is explicitly known and we verify the predictions of the general theory. For the one dimensional simple exclusion process, as recently shown by Derrida, Lebowitz, and Speer, it is possible to express the macroscopic entropy in terms of the solution of a nonlinear ordinary differential equation; by using the Hamilton–Jacobi equation, we obtain a logically independent derivation of this result.  相似文献   

7.
Standard ensemble or particle filtering schemes do not properly represent states of low priori probability when the number of available samples is too small, as is often the case in practical applications. We introduce here a set of parametric resampling methods to solve this problem. Motivated by a general H-theorem for relative entropy, we construct parametric models for the filter distributions as maximum-entropy/minimum-information models consistent with moments of the particle ensemble. When the prior distributions are modeled as mixtures of Gaussians, our method naturally generalizes the ensemble Kalman filter to systems with highly non-Gaussian statistics. We apply the new particle filters presented here to two simple test cases: a one-dimensional diffusion process in a double-well potential and the three-dimensional chaotic dynamical system of Lorenz.  相似文献   

8.
Wei Zhang  Jun Wang 《Physics letters. A》2018,382(18):1218-1225
A novel nonlinear stochastic interacting price dynamics is proposed and investigated by the bond percolation on Sierpinski gasket fractal-like lattice, aim to make a new approach to reproduce and study the complexity dynamics of real security markets. Fractal-like lattices correspond to finite graphs with vertices and edges, which are similar to fractals, and Sierpinski gasket is a well-known example of fractals. Fractional ordinal array entropy and fractional ordinal array complexity are introduced to analyze the complexity behaviors of financial signals. To deeper comprehend the fluctuation characteristics of the stochastic price evolution, the complexity analysis of random logarithmic returns and volatility are preformed, including power-law distribution, fractional sample entropy and fractional ordinal array complexity. For further verifying the rationality and validity of the developed stochastic price evolution, the actual security market dataset are also studied with the same statistical methods for comparison. The empirical results show that this stochastic price dynamics can reconstruct complexity behaviors of the actual security markets to some extent.  相似文献   

9.
To take into account the temporal dimension of uncertainty in stock markets, this paper introduces a cross-sectional estimation of stock market volatility based on the intrinsic entropy model. The proposed cross-sectional intrinsic entropy (CSIE) is defined and computed as a daily volatility estimate for the entire market, grounded on the daily traded prices—open, high, low, and close prices (OHLC)—along with the daily traded volume for all symbols listed on The New York Stock Exchange (NYSE) and The National Association of Securities Dealers Automated Quotations (NASDAQ). We perform a comparative analysis between the time series obtained from the CSIE and the historical volatility as provided by the estimators: close-to-close, Parkinson, Garman–Klass, Rogers–Satchell, Yang–Zhang, and intrinsic entropy (IE), defined and computed from historical OHLC daily prices of the Standard & Poor’s 500 index (S&P500), Dow Jones Industrial Average (DJIA), and the NASDAQ Composite index, respectively, for various time intervals. Our study uses an approximate 6000-day reference point, starting 1 January 2001, until 23 January 2022, for both the NYSE and the NASDAQ. We found that the CSIE market volatility estimator is consistently at least 10 times more sensitive to market changes, compared to the volatility estimate captured through the market indices. Furthermore, beta values confirm a consistently lower volatility risk for market indices overall, between 50% and 90% lower, compared to the volatility risk of the entire market in various time intervals and rolling windows.  相似文献   

10.
Using the modified sample entropy to detect determinism   总被引:2,自引:0,他引:2  
A modified sample entropy (mSampEn), based on the nonlinear continuous and convex function, has been proposed and proven to be superior to the standard sample entropy (SampEn) in several aspects. In this Letter, we empirically investigate the ability of the mSampEn statistic combined with surrogate data method to detect determinism. The effects of the datasets length and noise on the proposed method to differentiate between deterministic and stochastic dynamics are tested on several benchmark time series. The noise performance of the mSampEn statistic is also compared with the singular value decomposition (SVD) and symplectic geometry spectrum (SGS) based methods. The results indicate that the mSampEn statistic is a robust index for detecting determinism in short and noisy time series.  相似文献   

11.
Andrey Sokolov  Andrew Melatos 《Physica A》2010,389(14):2782-2792
We analyze a simple asset transfer model in which the transfer amount is a fixed fraction f of the giver’s wealth. The model is analyzed in a new way by Laplace transforming the master equation, solving it analytically and numerically for the steady-state distribution, and exploring the solutions for various values of f∈(0,1). The Laplace transform analysis is superior to agent-based simulations as it does not depend on the number of agents, enabling us to study entropy and inequality in regimes that are costly to address with simulations. We demonstrate that Boltzmann entropy is not a suitable (e.g. non-monotonic) measure of disorder in a multiplicative asset transfer system and suggest an asymmetric stochastic process that is equivalent to the asset transfer model.  相似文献   

12.
Verhulst model with Lévy white noise excitation   总被引:1,自引:0,他引:1  
The transient dynamics of the Verhulst model perturbed by arbitrary non-Gaussian white noise is investigated. Based on the infinitely divisible distribution of the Lévy process we study the nonlinear relaxation of the population density for three cases of white non-Gaussian noise: (i) shot noise; (ii) noise with a probability density of increments expressed in terms of Gamma function; and (iii) Cauchy stable noise. We obtain exact results for the probability distribution of the population density in all cases, and for Cauchy stable noise the exact expression of the nonlinear relaxation time is derived. Moreover starting from an initial delta function distribution, we find a transition induced by the multiplicative Lévy noise, from a trimodal probability distribution to a bimodal probability distribution in asymptotics. Finally we find a nonmonotonic behavior of the nonlinear relaxation time as a function of the Cauchy stable noise intensity.  相似文献   

13.
Guanghui Huang  Jianping Wan 《Physica A》2008,387(10):2306-2316
A nonparametric approach for European option valuation is proposed in this paper, which adopts a purely jump model to describe the price dynamics of the underlying asset, and the minimal entropy martingale measure for those jumps is used as the pricing measure of this market. A simple Monte Carlo simulation method is proposed to calculate the price of derivatives under this risk neural measure. And the volatility of the spot market can be renewed automatically without particular specification in the proposed method. The performances of the proposed method are compared to that of the Black-Scholes formula in an artificial world and the real world. The results of our investigations suggest that the proposed method is a valuable method.  相似文献   

14.
Branch length similarity (BLS) entropy is defined in a network consisting of a single node and branches. In this study, we mapped the binary time-series signal to the circumference of the time circle so that the BLS entropy can be calculated for the binary time-series. We obtained the BLS entropy values for “1” signals on the time circle. The set of values are the BLS entropy profile. We selected the local maximum (minimum) point, slope, and inflection point of the entropy profile as the characteristic features of the binary time-series and investigated and explored their significance. The local maximum (minimum) point indicates the time at which the rate of change in the signal density becomes zero. The slope and inflection points correspond to the degree of change in the signal density and the time at which the signal density changes occur, respectively. Moreover, we show that the characteristic features can be widely used in binary time-series analysis by characterizing the movement trajectory of Caenorhabditis elegans. We also mention the problems that need to be explored mathematically in relation to the features and propose candidates for additional features based on the BLS entropy profile.  相似文献   

15.
The question of optimal portfolio is addressed. The conventional Markowitz portfolio optimisation is discussed and the shortcomings due to non-Gaussian security returns are outlined. A method is proposed to minimise the likelihood of extreme non-Gaussian drawdowns of the portfolio value. The theory is called Leptokurtic, because it minimises the effects from “fat tails” of returns. The leptokurtic portfolio theory provides an optimal portfolio for investors, who define their risk-aversion as unwillingness to experience sharp drawdowns in asset prices. Two types of risks in asset returns are defined: a fluctuation risk, that has Gaussian distribution, and a drawdown risk, that deals with distribution tails. These risks are quantitatively measured by defining the “noise kernel” — an ellipsoidal cloud of points in the space of asset returns. The size of the ellipse is controlled with the threshold parameter: the larger the threshold parameter, the larger return are accepted for investors as normal fluctuations. The return vectors falling into the kernel are used for calculation of fluctuation risk. Analogously, the data points falling outside the kernel are used for the calculation of drawdown risks. As a result the portfolio optimisation problem becomes three-dimensional: in addition to the return, there are two types of risks involved. Optimal portfolio for drawdown-averse investors is the portfolio minimising variance outside the noise kernel. The theory has been tested with MSCI North America, Europe and Pacific total return stock indices.  相似文献   

16.
The concepts of nonextensive statistics, which has been applied in the study of complex systems, are used to analyze past records of the Earth’s climate. The fluctuations within the record of deuterium content (hence temperature) in the last glacial period appear to follow a q-Gaussian distribution. Analyses of the time-dependent nonadditive entropy indicate transitions between different complexity levels in the data prior to the abrupt change in the system dynamics at the end of the last glaciation. Different fluctuation regimens are evidenced through wavelets analysis. It is also suggested that time-dependent entropy analysis could be useful for indicating the approach to a critical transition of the Earth’s climate for which theoretical models are in many cases not available.  相似文献   

17.
An adaptive nonlinear neuro-controller with an integrated evaluation algorithm for nonlinear active noise control systems is proposed to attenuate the nonlinear and non-Gaussian noises. Inspired by the structure of the Hammerstein or Wiener model, the proposed controller is realized by the static nonlinear memory function mapping on the basis of a single neuron. A generalized filtered-X gradient descent algorithm based on an integrated evaluation criterion is developed to adaptively adjust the weights of the controller, where the weighted sum of Renyi's quadratic error entropy and the mean square error is applied as the integrated performance index, which improves the performance of the adaptive algorithm by introducing the information entropy. In addition, the convergence of the proposed approach is analyzed, and the computational complexity among different methods is investigated. The proposed scheme can effectively attenuate the nonlinear and non-Gaussian noises and has a relative simple structure and less learning parameters. The simulation results demonstrate the validity of the proposed method for attenuating the nonlinear and non-Gaussian noises.  相似文献   

18.
两相流流型多尺度熵及动力学特性分析   总被引:10,自引:0,他引:10       下载免费PDF全文
郑桂波  金宁德 《物理学报》2009,58(7):4485-4492
研究了几种典型非线性时间序列的多尺度熵特征,在此基础上分析了由插入式阵列电导传感器采集的144种流动条件下的垂直上升气液两相流电导波动信号.研究结果表明:利用小尺度下样本熵的变化速率特征可以分辨三种典型流型(泡状流、段塞流、混状流),而大尺度下样本熵的波动特征可以反映各种流型的动力学特性.泡状流随机可变特性表现为大尺度下样本熵的高值及振荡特征;段塞流气塞与液塞的间歇性运动表现为大尺度下样本熵的低值及平稳性;混状流极不稳定的振荡运动特性表现为介于泡状流及段塞流之间的熵值特点,并在更大尺度时熵值逐渐接近泡状流 关键词: 样本熵 多尺度熵 气液两相流 动力学特性  相似文献   

19.
20.
Yang and Qiu proposed and reframed an expected utility–entropy (EU-E) based decision model. Later on, a similar numerical representation for a risky choice was axiomatically developed by Luce et al. under the condition of segregation. Recently, we established a fund rating approach based on the EU-E decision model and Morningstar ratings. In this paper, we apply the approach to US mutual funds and construct portfolios using the best rating funds. Furthermore, we evaluate the performance of the fund ratings based on the EU-E decision model against Morningstar ratings by examining the performance of the three models in portfolio selection. The conclusions show that portfolios constructed using the ratings based on the EU-E models with moderate tradeoff coefficients perform better than those constructed using Morningstar. The conclusion is robust to different rebalancing intervals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号